Автомобиль на водороде mirai

overhaulind › Блог › Toyota Mirai — Водородный седан

Что человеку приходит первым на ум, если он слышит слово «гибрид»? Конечно же Toyota Prius.

Эта странная по всем параметрам машина с довольно спорным дизайном произвела фурор в свое время. Голливудские звезды считали этот автомобиль символом любви к природе, пытаясь оправдаться за гараж полный суперкаров и внедорожников, а люди до сих пор стоят в очередях и ждут его.

Секрет приуса прост — Toyota настоящий автогигант и может себе позволить пускать в серию такие машины, о которых другие бренды только мечтают и осторожно тестируют в надежде спрогнозировать спрос и максимум привозят их на выставки, до производства добирались единицы и никому не удалось повторить успех.
Если бы Приус провалился, Toyota этого бы не почувствовали и просто уволили пару инженеров, а сборочные ленты быстро переоборудовали бы под Land Cruiser. Но он не провалился а наоборот, вышел как раз тогда, когда он был всем нужен и актуален. Его успех изменил Toyota навсегда, сейчас практически во всем модельном ряде японской компании и ее подразделения Lexus если гибридные силовые установки. А тенденция привела к тому, что суперкары, McLaren, Ferrari и Porsche, получили гибридные силовые установки…

Но сейчас настала эпоха электромобилей: мало того что у Tesla Model S вообще нет выхлопной трубы, так еще и динамические характеристики у него на уровне самых быстрых суперкаров.
Гибридным автомобилям уже трудно тягаться с ними, ведь разгон до сотни не такой впечатляющий, а выбросы, хоть и маленькие, но все-таки есть.

И тут в Toyota решили ударить по самому слабому месту электромобилей — запасу ходу и скорости заправки.

Японским ответом стала модель Toyota Mirai — автомобиль на водородных топливных элементах. На самом деле Mirai не первый водородный автомобиль, Honda FCX была представленная еще в 2007 году, но во-первых она выглядит не менее спорно чем Prius, а как я уже говорил выше, ресурсы Toyota практически безграничны.

Так в чем же прелесть водородного автомобиля? Если говорить конкретно о MIrai, то серийный образец выглядит как минимум симпатичным!

А на самом деле плюсов тут несколько:
1. Скорость заправки. Внутри автомобиля спрятано 2 баллона объемом 60 и 62,5 литра, для полной заправки которых требуется всего 3 минуты — столько же, сколько нужно для заправки полного бака бензина. Т.е. мы можем передвигаться на нем как привыкли — «заправился и поехал»

2. У автомобиля нет выбросов! Из выхлопной трубы выходит самый обыкновенный пар!
3. В нем нет огромного количества аккумуляторов, производство которых наносит не малый вред природе.
4. Высокий КПД. У водородного двигателя КПД 83%, для сравнения у 1.3 литрового двигателя Toyota 2014 года КПД всего 38%.

Но есть конечно и минусы:
1. Водород заправляется под давлением, что может привести к проблемам, хотя если верить Toyota то несчастных случаев пока не было.

2. Водород — самый распространенный элемент во вселенной, увы, мы так и не освоили дешевый способ его добычи. Но это скорее вопрос времени.
3. Количество водородных заправок не превышает количество заправок для электромобилей, и не превысит. Если электромобили можно спокойно заряжать на любой парковке, то для водородной заправки требуется оборудование серьезнее чем у бензиновой АЗС.

Что еще можно сказать об этом чуде инженерной мысли? Длинна — 4870 мм, ширина — 1810 мм. а высота — 1535 мм. Дорожный просвет 130 мм =)
Водородный двигатель в результате химической реакции взаимодействия водорода и кислорода вырабатывает электроэнергию, передаваемую на электродвигатель, мощностью 154 л.с., который приводит в движение передние колеса автомобиля.

Водородная система выполняет роль генератора и занимает место тяжелых аккумуляторов, а скоростные характеристики как и в электромобилях будут упираться в мощность электромотора.

Так что в будущем, вероятно, нас ждет настоящая борьба между электромобилями и водородными за место на рынке. Вопрос только в том, что человечество научится делать быстрее? Более мощные аккумуляторы или дешевле и быстрее добывать водород?

Источник

Это, конечно, слишком смелая теория, но порой кажется, что многие фирмы, выпускающие экологически чистые автомобили недооценивают важность дизайна. Вспомните, каким унылым, к примеру, была внешность “Тойоты-Приус» и “Хонды-Инсайт» первого поколения. Уродцы ведь чистой воды!

Неудивительно, что «Приус-II», именно начиная с которого и пошел всемирный бум на гибриды, сделали гораздо более симпатичным. Ну хотя бы немного… С другой стороны, если посмотреть на продукцию «Теслы», то здесь все не в пример круче. И первая-то серийная электричка Илона Маска – Tesla Roadster – была машиной симпатичной. Как не быть симпатичным “Лотусу-Элиз» на батарейках?! Потом пошли клевый Model S, футуристичный Model X… Ну надо ли теперь объяснять почему именно “Тесла» лидер рынка электричек?

Можно быть это, конечно, все и не совсем так, но в одном мы точно не сомневаемся – Toyota реально стоило сильнее запариваться по поводу дизайна своего уникального седана Mirai. Ну как это вообще возможно? Первый в мире серийный (пусть даже и мелкосерийный) автомобиль на топливных элементах, а выглядит как “Приус» в обвесе от мастеров тюнинга из какой-нибудь Румынии… Возможно из-за никакущего дизайна на «Мирай» не обратили особого внимания. Ну кроме узкого круга углубленных в проблему специалистов. И это при том, что технологии топливных элементов в перспективе выглядят даже интереснее чистых электромобилей…

Но хватит уже пинать “тойотовских» дизайнеров за прошлые грехи. Как говорил Винсент Вега из “Криминального чтива»: “Если человек признал свои ошибки, его надо простить». Второе поколение “Мирай» убедительно показывает – выводы были сделаны, виновные наказаны, больше подобного не повторится.

Второй “Мирай», представленный в конце 2019-го, это вообще другой автомобиль. Настолько, что ему впору придумывать новое имя. Смотрите сами, первое поколение модели было переднеприводным – новичок же построен на заднеприводной премиальной платформе. Причем, при длине 4975 мм и колесной базе 2920 мм “Мирай-II» играет в одной лиге с “пятеркой» BMW. Более того, главный конструктор машины Йошидзаки Танаки обещает – по ездовым ощущениям эта Toyota превзойдет немецкий премиум. Свежо предание, но… смело черт возьми!

Читайте также:  Автомобиль министра 2 5 млн

В этом-то и скрыт главный потенциальный козырь технологии fuel cells. Ведь электроэнергию Mirai получает в результате химической реакции водорода и кислорода. Все это происходит без процесса горения, а значит и вредных выхлопных газов нет как нет. С другой стороны водородомобилю не нужны дорогостоящие тяговые аккумуляторы, которые человечество еще не научилось толком утилизировать. Одни плюсы как ни крути. Особенно учитывая, что топливо для Mirai – сжиженный водород. А ведь именно водород это самый распространенный элемент во вселенной.

И все же вопросы есть. Ведь водородным бывает не только автомобиль, но и, например, бомба… Что, скажем, случится с топливным баком Mirai в случае аварии? Мы попытались ответить на этот интересующий всех и каждого вопрос в нашем новом виде. Да что там ДТП – можете своими глазами посмотреть, что происходит, когда водородный бак “Мирай» пробивает настоящей пулей. Стоп-стоп, дальше без спойлеров…

Да, и не забудьте написать в комментариях, а на чьей стороне вы сами в грядущей войне форматов. Кто же победит в итоге: гибриды, электромобили или машины на топливных элементах?

Источник

Водородный двигатель 4JM

В поиске новых, более дешёвых источников энергии передвижения человеческая мысль пришла к идее использования водорода в качестве топлива для заправки колёсных средств передвижения. Несмотря на то, что идея не нова (первый водородный двигатель внутреннего сгорания создан в 1806 году французом Франсуа Де Ривасом), к промышленному использованию самого лёгкого газа в топливных элементах, двс и газотурбинных двигателях инженеры пришли только вначале нового, XXI века.

Как работает водородный двигатель

Главной причиной поиска нового источника энергии для автомобильных двигателей стала острая необходимость сокращения вредных выбросов. Современные технологии очистки отработанного топлива позволяют сократить объёмы выбросов до сотен граммов на километр пути. Но ситуация усугубляется неконтролируемым ростом числа автомашин на дорогах: разбухающий автомобильный поток нивелирует качество современных технологий удаления кислородно-углеродной смеси.

Наиболее перспективным направлением развития водородной технологии является применение топливных элементов. Они способны производить электроэнергию, располагаясь непосредственно на борту транспортного средства. В числе прочих разработкой гибридного водородного двигателя занимаются инженеры японской автомобильной корпорации Toyota Motor Corporation. В 2014 году под этой появился первый в мире серийный автомобиль на водороде – Mirai (в переводе с японского – «будущее»).

Силовая установка Toyota Mirai – гибридная, включает три составные части:

Батарея способна производить 114 кВт мощности, что по DIN эквивалентно 155 л.с. Удельная мощность батареи TFCS (3,1 кВт/л) более, чем в 2 раза выше первого варианта, разработанного инженерами Toyota – FCHV-advantage.

4JM – лучший в мире водородный мотор

Следует отметить, что химическая реакция по выработке электрической энергии происходит без горения, повышая, тем самым экологичность и без того абсолютно «чистого» электромотора. Преобразование энергии в двигателе 4JM осуществляется с КПД 83 %. На двигатель установлена вторичная никель-кадмиевая батарея в виде аккумулятора мощностью 21 кВт.

4JM представляет собой синхронный электродвигатель переменного тока. При рекуперативном торможении аккумулятор сохраняет возвращаемую в сеть электроэнергию, которая вырабатывается тяговым двигателем в режиме генератора.

С помощью преобразователя полученное на элементах напряжение повышается до показателя 650 В. Это нужно для того, чтобы уменьшить геометрические параметры электромотора и число топливных элементов, компактно уместить составные части системы внутри автомобиля. Постоянный ток в переменный преобразуется с помощью инвертора. В процессе заправки закачка водорода в бак производится через фильтрационную угольную систему. При движении через воздухозаборники в батарею попадает воздух из атмосферы.

Начинается химическая реакция с водородом, результатом которой является получение электрической энергии. При нажатии на акселератор осуществляется её подача от батареи к мотору. Знатоки химии сразу определят, что единственным побочным продуктом в данной цепочке является образующаяся в результате химической реакции вода. Её отвод осуществляется через выхлопную трубу.

Расположение батареи и водородных баллонов высокого давления по центру машины вкупе с оптимальными настройками электромотора обеспечивают оптимальное управление показателями мощности. Результатом этого является восприимчивость машины к действиям водителя на любой скорости, повышение крутящего момента и обеспечение плавного разгона. В обратном порядке происходит процедура торможения.

Геометрия машины спроектирована таким образом, чтобы обеспечить максимально низкий центр тяжести, оптимальную развесовку передней и задней частей кузова и общую максимальную жёсткость конструкции.

Количество водородных ёмкостей – 2 (60 и 62,4 л, соответственно). Газ хранится в них под давлением 70 МПа. Максимальная масса водорода, закачиваемого в ёмкости в течение 3 минут, составляет 5 кг. Это позволяет на одной заправке проехать до 650 километров, развивая максимальную скорость 175 км/ч.

Всё ли так безоблачно в водородной технологии

Срок службы одной топливной ячейки, работающей на водороде, составляет до 10 лет. В работе двигателя отсутствуют характерные для двс шумы и вибрация. Моторы абсолютно чисты с экологической точки зрения. Тем не менее, критика исследований в области транспорта на водородном топливе обширна. Апологеты традиционных источников энергии для колёсных автомашин и разработчики обычных электродвигателей «задвигают» водород, указывая на ряд трудноразрешимых вопросов в области инфраструктуры и технологии.

Критики водородного транспорта указывают на отсутствие стандартов в области производства, хранения, перемещения и использования водорода. Значительный объём топливных баков для дальних поездок сокращает вместимость салона и багажника. Есть чисто технологические факторы, связанные с опасностью неправильного обращения с оборудованием для хранения и закачки водорода. Он чрезвычайно летуч: малейший зазор в конструкции баков и систем подачи водорода к месту химической реакции может привести замкнутому наполнению салона автомашины и воспламенению.

Словом, проблем, которые предстоит решить на пути к безопасному и экономичному массовому применению водорода для заправки автомобильного транспорта, достаточно. Главный вопрос в том, готовы ли владельцы автокорпораций вкладывать значительные средства в развитие новой инфраструктуры, дальнейшие теоретические исследования и практические разработки. Ведь на сегодня дозаправка автомашин в пути (то есть, без посещения специальных заправочных станций) невозможна.

Деньги – основа всего

Главным «минусом» считается сложность процесса производства столь огромного количества водорода, которое понадобится при массовом переводе машин на новое топливо. Дорого на сегодняшний день получать водород, как из природного газа, так и методом электролиза. Таким образом, стоимость пробега на машине с водородным двигателем значительно дороже, нежели на бензине или солярке.

На данный момент, заправляя 120 литров водорода в пару баков высокого давления, владельцы авто должны выложить 960 евро. Это очень дорого, в сравнении с бензином или дизельным топливом. Позволить себе приобрести такой автомобиль и постоянно передвигаться на нём, наматывая немалые «концы», может позволить не каждый средний житель развитых стран Европы, Азии или Америки. Пока Toyota Mirai представляет собой дорогой экземпляр для автомобильной коллекции, либо средство передвижения для толстосумов, не привыкших считать деньги.

Читайте также:  Автомобиль мерседес бенц спринтер классик характеристика

Частичным решением вопроса мог бы стать гибридный двигатель, в котором вторым топливом является традиционный бензин или солярка. Для проведения такого тюнинга вручную, нужно осуществить установку пусковой батареи, БСУ, водородных и кислородных баллонов. Электротехническая часть тюнинга:

Сырьём для получения водорода является питьевая вода, слитая в ёмкость для электролиза. Источником энергии является генератор. Газ вырабатывается в небольшом количестве, затем направляется во впускной коллектор двс. Там происходит смешивание водорода с бензином и последующее сгорание. Однако, расход энергии на получение водорода в пути, и его количество не позволяют говорить об экономичности подобных установок.

Невзирая на то, что машины с гибридными установками на водородном топливе и электромоторах ближе всего по конструкции, философии использования и технологии к обычным электромобилям, апологеты последних являются главными критиками нового источника энергии. Видимо, в будущем затраты на решение всех вопросов будут ничтожными по сравнению с доходами от продаж автомашин на водороде. Если, конечно, удастся преодолеть все препятствия.

Источник

Новости и тест-драйвы › Тест-драйв: Ищем доброту внутри водородомобиля Toyota Mirai

Дизайн седана Mirai заставляет высказываться даже отъявленных молчунов. Но в отличие от Приуса, которого уже ждут сотни тысяч реальных покупателей, для этого водородомобиля дизайн, даже несмотря на формальное начало продаж, дело не десятое ― сотое. Потому что Mirai как ракета-носитель ― служит для выведения полезного груза в космос, читай водородных технологий ― в будущее («Mirai» по-японски), где ими будут пользоваться не сотни и тысячи, а, как и Приусами, сотни тысяч. А до этого ещё ― как до Луны.

Будущее непредсказуемо, но к нему можно подготовиться ― гласит тойотовская презентация автомобилей на топливных элементах. Когда лет пять назад на одном из мотор-шоу я спрашивал инженеров разных компаний, какие из альтернативных источников энергии самые перспективные, они отвечали: этого не знает никто. Поэтому, готовясь к будущему, все развивают всё: гибриды, электромобили ― и водородные технологии. Этой весной в Женеве я повторил опрос ― с тем же результатом. Но в случае с Тойотой очевидно: долгосрочная ставка ― именно на водород. Верим, говорят, что в будущем Н 2 станет основным источником энергии.

Если бы не сенсорная консоль с отдельным климатическим дисплеем, внутри Mirai можно было бы спутать с Приусом: «обёрнутая» передняя панель, приборы в центре, тот же руль и похожие жёсткие кресла. Привычно тяну к себе и вниз крошку-селектор ― и почти бесшумно выкатываюсь на Fuji Speedway. Вспомните, как наш главред описывал звуковое наполнение водородного Мерседеса В-класса: подвывание электромотора, журчание планетарной передачи, щелчки при переключении режимов силовой установки. Здесь под креслом, где водородный генератор, тоже что-то шипит и журчит, но в целом Mirai примерно вдвое тише негромкого Приуса.

Динамика бодрее приусиной: всё-таки 335 Н•м и 155 сил — это больше, чем у гибридных ДВС и электромотора вместе взятых. Паспортное преимущество водородомобиля ― 9,6 с до сотни против 10,6. Управлять тягой легко и просто, причём она не исчезает и после 120 км/ч. Но главное ездовое отличие ― в поворотах: Mirai заезжает в них, как Prius, гружённый до полной массы. Усилие на руле и реакции сносные, но лишние 500 кг (из общих 1850) ты ощущаешь, будто свои. Крены больше, подвеска размягчённее. Важно, что Mirai построен не из кубиков TNGA, как новый Prius, а на основе однообъёмника Prius v прежнего поколения.

Революционного в устройстве силовой установки «Будущего» нет ничего, но в сравнении с той, что в 2008 году появилась на водородном Хайлендере по имени FCHV-adv, она усовершенствована во всём. Электрохимический генератор, где водород соединяется с кислородом, выделяя электричество и водяной пар, стал вдвое компактнее и легче, настолько же выросла его удельная отдача (с 0,83 кВт/кг до 2,0). Количество водородных баллонов сократилось с четырёх до двух, их вместимость повысилась. Но главное ― топливная система седана Mirai, по уверениям Тойоты, стоит в 20 раз дешевле прежней (подробнее ― в «Технике»)!

Хотя цена без налогов в 60 тысяч долларов или евро за водородный, но, по сути, Prius ― это всё ещё перебор. Тем более, по опыту коллег, которым посчастливилось вместо двух кругов по треку поездить по дорогам Германии, реальный расход водорода почти вдвое выше паспортных 0,69 кг/100 км ― 1,3 кг на сотню. Это даже больше тех 1,08–1,18 кг/100 км, что Петровский показал за рулём старого В-класса. К слову, этой весной в Женеве, где Mirai справлял европейскую премьеру, мы обсуждали тойотовский водородный седан с «электромобильным» начальником Мерседеса Харальдом Крёгером.

«Такая же по технике машина, ― имея в виду тот самый B-класс F-Cell, говорит Крёгер, ― была у нас ещё четыре года назад. Мы с продажами повременили, Toyota ― нет. Это их заявление, мол, мы работаем над топливными элементами, и посмотрите, чего добились. Уверен, что, как и остальные, они ещё очень далеки от целевой себестоимости водородной технологии и продают Mirai в убыток, причём огромный. Однако при тираже в несколько сотен общие затраты частично компенсируются имиджевой прибылью и потому разумны. Мы такой конкуренции рады: чем больше игроков в этом направлении, тем вероятнее результат!»

Проблемы, стоящие на пути распространения водородного транспорта, с тех пор, как в начале века мы читали про Ниву Антэл, никуда не делись. Добывать водород экологичным способом (а не из природного газа или иного ископаемого топлива с выделением «парникового» CO 2 ) по-прежнему энергозатратно, то есть дорого, а заправочной инфраструктуры, считайте, нет ― меньше тысячи заправок по всему миру. Однако надежда на их решение есть, причём, судя по энтузиазму тойотовских водородофилов, она и не надежда даже, а ― вера.

Во-первых, почему бы не использовать тот водород, что уже и так производится? По подсчётам японцев, в мире его ежегодно выделяется столько, что хватит на питание 250 миллионов седанов Mirai. А мерседесовцы прикинули, что даже если отделить только побочный, «мусорный» водород от всякого рода химических производств, его хватит на год 750 тысячам водородомобилям. Есть и совсем безумные проекты вроде австралийского CarbonNet, куда затесалась Toyota. Там, говорят, полно бурого угля, который из-за своей легковоспламеняемости нетранспортабелен. Нет транспорта ― нет продаж, а значит, его очень дёшево жечь на месте.

Читайте также:  Автосалон грузовых автомобилей в красноярске

Чтобы развеять «инфраструктурные» сомнения, японцы приводят в пример создание американских хайвеев, когда за тринадцать лет между штатами было проложено 66 000 км дорог. И американскую же бензоструктуру: в 1901 году в Техасе нашли нефть, через шесть лет открыли первую заправку, а в 1929-м их в Америке было уже 300 тысяч! Всё, мол, возможно ― и инфраструктура с нуля за двадцать лет тоже. С одной стороны ― мы слышим об этом годами. Когда АвтоВАЗ представил Антэл, над топливными элементами работали чуть ли не все автопроизводители мира. И где результат? Двести лизинговых седанов Honda FСX Clarity за три года?

С другой стороны ― по тойотовским презентациям пятилетней давности видно: всё идёт по плану. Собирались в двадцать раз снизить стоимость топливной установки 2008 года ― снизили. Намечали старт публичных продаж автомобиля на топливных элементах на 2015-й ― сделали. Инфраструктура отстаёт ― вместо ста станций в Японии к марту открыта только 81. Но к Олимпиаде 2020 года Токио потратит на «водородную» поддержку 360 млн евро, частично оплачивая постройку заправок (1–3 млн евро каждая), частично сами автомобили. Вдобавок треть операционных расходов каждой станции (85 тысяч евро) будут сообща компенсировать Toyota, Honda и Nissan.

На сегодня по тойотовской классификации водородомобили преодолели две стадии развития из четырёх. Впереди ― десятилетний период так называемой ранней коммерциализации, посвящённый, прежде всего, строительству заправок. Точка перегиба, когда затраты на станции и сам водород достигнут целевых, а заправочный бизнес начнёт зарабатывать, намечена на 2025 год. В цифрах ― это два миллиона водородомобилей на дорогах Японии и 1000 станций в 47 префектурах. После этого ожидается «полная коммерциализация», и кривая распространения автомобилей на топливных элементах пойдёт в гору.

Планы ― грандиозные. Но таким образом Mirai превратится из эмбриона в автомобиль в лучшем случае через десять лет, а Tesla Model S есть уже сейчас. Зачем заморачиваться с добычей, перевозкой, хранением и переработкой водорода, если можно отсечь «лишнее» ― и ездить на электромобилях? Тойтовцы парируют временем зарядки (три минуты против нескольких часов), низким запасом хода электромобилей, ценой батарей (Mirai-то обходится старой никель-металлгидридной) и опять-таки необходимостью строительства зарядных станций. Плюс, говорят, если электричество и водород получать из природного газа, то КПД полного цикла преобразований у водородомобиля выше: 36% против 24.

Я снова вспоминаю мерседесовца Крёгера, который называет себя фанатом электромобилей. Он говорит, что за последние пять лет цена батарей снизилась примерно на треть, а за следующие десять упадёт ещё на 30–40%. Развиваются в электромобильном направлении новые литий-воздушные (Li-air) и литий-серные (Li-S) аккумуляторы. Ищутся иные типы. Химия, поясняет, сильно опережает возможности производства, которому предстоит решить, как выпустить «идеальную» батарею за разумные деньги и сохранить её характеристики после сотен циклов зарядки-разрядки. Но десяти лет, уверен Харальд, для прорыва достаточно.

В общем, победы какой-то одной технологии не предвидится и через десять лет, будет борьба. А к 2050 году, по прогнозам, население Земли увеличится до 9,6 млрд человек (сейчас около 7,3 млрд), причём 70% из них будут проживать в городах. Бороться придётся за чистый воздух. К этому сроку Toyota планирует сократить выбросы всего своего модельного ряда на 90%, полностью отказавшись от автомобилей с ДВС в качестве основного источника энергии. В этом смысле Mirai ― доброе дело. Я нажимаю кнопку Н 2 0 слева от руля ― и сливаю свежесинтезированную пресную воду. С ней, кстати, нас тоже ждёт напряжёнка.

Паспортные данные

Модель Toyota Mirai
Кузов
Тип кузова седан
Число дверей/мест 4/4
Длина, мм 4890
Ширина, мм 1815
Высота, мм 1535
Колёсная база, мм 2780
Колея передняя/задняя, мм 1535/1545
Снаряжённая масса, кг 1850
Полная масса, кг 2180
Объём багажника, л 361
Силовая установка
Тяговый электромотор синхронный, постоянного тока
Расположение поперечно, над передней осью
Макс. мощность, л.с./кВт 154/113
Макс. крутящий момент, Н•м 335
Тяговая батарея никель-металлгидридная
Расположение за спинкой заднего сиденья
Напряжение, В 244
Ёмкость, кВт•ч 1,6
Электрохимический генератор полимер-электролитный
Расположение под передними креслами
Макс. мощность генератора, л.с./кВт 155/114
Трансмиссия
Редуктор одноступенчатый
Привод передний
Ходовая часть
Передняя подвеска независимая, пружинная, McPherson
Задняя подвеска полузависимая, пружинная
Передние тормоза дисковые вентилируемые
Задние тормоза дисковые
Шины 215/55 R17
Дорожный просвет, мм 130
Эксплуатационные характеристики
Максимальная скорость, км/ч 178
Время разгона с 0 до 100 км/ч, с 9,6
Расход топлива, кг/100 км
— городской цикл 0,69
— загородный цикл 0,80
— смешанный цикл 0,76
Ёмкость топливного бака, кг 5
Топливо водород

Техника

История

История водородомобилей в разы длиннее, чем кажется. Первое их упоминание относится аж к 1807 году, когда француз Франсуа Исаак де Ривац запатентовал самодвижущуюся повозку с ручным приводом клапанов, дозировавших водород и воздух, и воспламенением смеси от вольтова столба. А топливные элементы ещё в 1839 году открыл англичанин Уильям Роберт Гроув. До недавнего времени водород в автомобилях использовали именно в этих двух направлениях ― сжигая непосредственно в цилиндрах или питая топливные элементы. Причём если, например, фирма BMW начала водородные эксперименты с ДВС в 1979 году (к слову, тогда же в НАМИ испытывали водородный «рафик»), то первый автомобиль на топливных элементах поехал в 1966-м ― это был экспериментальный GM Electrovan, построенный по самым что ни на есть космическим технологиям.

Свой последний концепт-кар с водородом в ДВС баварцы показали в 2006-м, а три года назад объявили о сотрудничестве с Тойотой. Теперь такой же топливно-элементный генератор на 370 ячеек, как у Mirai, используется в экспериментальной «пятёрке» BMW GT. Очевидно потому, что получать из водорода на борту электричество и воду на 10–20% эффективнее, чем сжигать его в цилиндрах. Однако серийно производить водородомобиль BMW планирует не раньше 2020-го.

Сама Toyota взялась за водород только в 1992 году, но сразу ― за топливные элементы. Первый ходовой прототип EVS-13 на базе кроссовера RAV4 первого поколения был показан в 1996 году в Осаке в ходе Тринадцатого международного электромобильного симпозиума (отсюда и название). Водород в нём вырабатывался из метана, а десятикиловаттному электрохимическому генератору помогала мощная батарея: тойотовский водородный первенец родился гибридом.

За кадром

Павел Карин, 16 декабря 2015 в 11:01. Фото Драйва и компании Toyota

Источник

Ответы на популярные вопросы