Автомобиль на воздухе какое давление воздуха

Содержание
  1. Довинтиков Моторс › Блог › Как влияют атмосферные условия на работу двигателя? или писец масметру…
  2. Автомобиль на сжатом воздухе
  3. 1500 бар — самое высокое давление в машине. И где оно?
  4. 1. Камера сгорания — 60 бар (бензиновый мотор), 75 бар (дизель)
  5. 2. Топливная система — до 1500 бар
  6. 3. Система смазки двигателя — до 4 бар
  7. 4. Давление во впускном трубопроводе — до 2,5 бар
  8. 5. Система охлаждения двигателя — 1,5 бара
  9. 6. Разрежение во впускном трубопроводе — 0,8 бара
  10. 7. Перед турбиной — до 2 бар
  11. 8. Система выпуска отработавших газов — до 1 бара
  12. 9. Управление трансмиссией — 5 бар (АКП), 7,5 бар (вариатор), 60 бар (робот)
  13. 10. Тормозная система — до 180 бар
  14. 11. Система кондиционирования — 4 бара (при заправке), 20 бар (рабочее)
  15. 12. Разрежение в вакуумном усилителе — до 0,8 бара
  16. 13. Амортизаторы — до 30 бар
  17. 14. Пневмоподвеска — 16 бар
  18. 15. Газовые упоры — 120 бар
  19. 16. Шины — 1,8–2,8 бара
  20. Mechanoid › Блог › Аэродинамика. Часть 1. Прижимная и подъемная силы.

Довинтиков Моторс › Блог › Как влияют атмосферные условия на работу двигателя? или писец масметру…

Не много прелюдии Други мои…
Где то с пол года назад стал замечать, загорается чек на ШПРОТЕ
да не просто так загорается а при колебаниях температуры воздуха, особенно это сильно проявилось поздней осенью, зимой и собственно в вчера))))
Ну да ладно, загорелся чек. сканер не видит ничего…
Машина тупит т.к у шпрот интересный момент при горящем чеке мотор выдаёт всего 170Nm
В общем вчера возвращаясь домой чек загорелся, но машина стала вести себя не адекватно,
то тупит то вырывает из под себя, коробка переключается не понятно, толчки пинки удары торможения.
Я малость присел на жопу…
Сегодня поехал к Еноту, бравые его парни быстро подключили ТЕХ который увидел масметр… вернее
…да ему… )))))
Сняли, посмотрели и визуально ничего не увидели…

покупать новый за 9000 рублей как то не встало у меня ничего))))
Попросил у них б\у т.к они у них должны быть по определению, потому что масметры на шпротах
ломаются раз в сто лет))))
В общем поменяли, скинули ошибку и машина то поехала…
Поехала совсем по другому))))
Так вот Вам информация к размышлению…
Масметр выходит из строя очень редко, вчера было критически низкое атмосферное давление,
всего 730 мм… Сегодня не выше, так можно же предположить что этот датчик просто наелся из за этого?
Да, многие знатоки сейчас начнуть чесать репу и биться головой об монитор с криками Довинтиков ты м.дак
с пеной у рта доказывать, что такого не может быть)))))
Но…
Крутящий момент, а следовательно, и мощность двигателя внутреннего сгорания в значительной степени определяются количеством и составом топливо-воздушной смеси, поступающей в цилиндры мотора, а также качеством ее сгорания. Эти показатели напрямую зависят от количества в заряде как бензина, так и воздуха, а точнее – кислорода, который «отвечает» за процесс сгорания топлива.
Количество подаваемого топлива регулируется педалью газа и электроникой, поэтому учет расхода данной составляющей более точен. А вот с кислородом ситуация иная, поскольку его содержание в воздухе определяется атмосферными условиями – давлением, влажностью и температурой, из-за чего и мощностные характеристики двигателя непостоянны.
Влажный воздух в сырую погоду содержит меньше кислорода, чем сухой, – вот почему в дождь или туман мощность двигателя может немного снизиться.
В прохладную погоду воздух имеет большую плотность и содержит больше кислорода, следовательно, мотор становится немного «живее». В жару при невысокой плотности воздуха кислорода в нем меньше, поэтому мощность также уменьшается.
При повышении атмосферного давления воздух содержит больше кислорода, поэтому мощность мотора увеличивается. С падением давления плотность воздуха, а значит, удельное содержание кислорода в единице его объема (парциальное давление) уменьшается. Поэтому, например, в горах мощность двигателя снижается (приблизительно на 1% на каждые 100 м над уровнем моря).
Следует отметить, что в нашем умеренном климате потери мощности из-за повышенной влажности воздуха незначительны и могут остаться незамечеными. Чувствуется это в основном в жару, так что сразу ехать на СТО не следует. Меньше зависят от атмосферных условий двигатели с наддувом, воздух в цилиндры которых принудительно загоняет компрессор

Собственно всем Добра)))))

Источник

Автомобиль на сжатом воздухе

Одной из самых значительных проблем современности является проблема загрязнения окружающей среды. Каждый день человечество выбрасывает в атмосферу огромное количество углекислого газа. Каждая машина, работающая на двигателе внутреннего сгорания, вредит нашей планете и делает экологическую ситуацию еще хуже. К сожалению это не все. Энергетическая проблема стоит не менее остро, ведь запасы нефти не бесконечны, цены на бензин все растут, и нет причин для их уменьшения. В поисках альтернативных источников топливо было изобретено множество проектов, но все они либо слишком дорогостоящи, либо малоэффективны. Хотя один из них выглядит весьма обещающим. Судя по нему, возможно, новым топливом будущего станет… воздух!

(Как ни странно, автомобильные двигатели на сжатом воздухе имеют очень давнюю историю. Впервые эта технология была применена еще в восьмидесятых годах девятнадцатого века, когда Луи Мекарски запатентовал свое изобретение, получившее название «пневматический трамвай».)

Изобретатель этого интересного концепта, неутомимый француз Ги Нэгр (Guy Negre), бывший инженер «Формулы 1», работал над своим проектом более десяти лет. Оригинальная схема двигателя, похожая на обычный ДВС, позволяла приводить в движение автомобиль за счет сжатого воздуха, хранящегося в баллонах. Идея была позаимствована Нэгром именно из конструкции гоночных болидов, в которых для разгона используется турбина, питаемая сжатым воздухом из специального баллона.

Начал Ги Нэгр с оригинальной концепции гибридного автомобиля, который на малых оборотах двигался бы за счет воздуха, а на больших — запускал обычный двигатель внутреннего сгорания. Этот автомобиль был разработан в середине 90-х, однако изобретатель решил пойти еще дальше. Результатом 10 лет напряженной работы стало несколько моделей, ездящих исключительно на сжатом воздухе.

Первые прототипы чисто воздушного автомобиля, созданного французами из фирмы Ги Нэгра Motor Development International (MDI), были продемонстрированы в начале 2000-х, а сейчас, наконец, дело дошло до масштабного внедрения этой замечательной разработки. Компания Tata Motors, крупнейший производитель автомобилей в Индии, договорилась с MDI о запуске лицензионного производства небольшого трехместного экомобиля, работающего на сжатом воздухе.

Модель MiniC.A.T оснащена баллоном из углеволокна, вмещающим 90 куб. м. сжатого воздуха. На одной заправке воздухом машина способна проехать от 200 до 300 км, с максимальной скоростью в 110 км/ч. С помощью компрессоров, установленных на АЗС, ее можно будет заправить за 2-3 минуты, уплатив при этом каких-то 1,5 евро. Возможен и альтернативный вариант заправки при помощи встроенного компрессора, подключаемого к обычной сети переменного тока. Чтобы полностью заполнить “бак”, ему потребуется 3-4 часа.

Несмотря на то, что электричество производится в основном за счет сжигания ископаемого сырья, воздушный экомобиль оказывается гораздо эффективнее автомобилей с ДВС. По КПД он превосходит обычные автомобили в 2 раза, а электромобили — в 1,5. Кроме того, его отличает полное отсутствие вредных выхлопов, а также крайняя неприхотливость в обслуживании: благодаря отсутствию камеры сгорания масло в двигателе можно менять не чаще, чем через каждые 50 тыс. км пробега.

Продавать их планируют в Европе и Индии, но если проект обретет популярность, возможно и по всему миру.

Почин индийцев поддержала американская компания Zero Pollution Motors, которая объявила о скором выводе на американский рынок автомобилей, работающих на сжатом воздухе и построенных по технологии Гая Негре.

Zero Pollution Motors планирует производить автомобили CityCAT с вариантом двигателя (6-цилиндровый, 75-сильный Dual-Energy), позволяющего работать в двух режимах: просто на сжатом воздухе, либо с потреблением небольшого количества топлива для повышения температуры воздуха в баллонах и соответственно мощности. В таком режиме автомобиль потребляет около 2.2 литров бензина на 100 километров вне города.

CityCAT – шестиместный автомобиль с вместительным багажником. Кузов состоит из стеклопластиковых панелей, крепящихся к алюминиевому каркасу. Автомобиль сможет проезжать в городе 60 километров на одном запасе воздуха, а за городом при небольшом расходе бензина – 1360 километров. Скорость авто при работе только на сжатом воздухе – 56 км/ч, при использовании бензина – 155 км/ч.

Ориентировочная стоимость авто – 17.8 тысяч долларов. Первая партия должна поступить на рынок в 2010 году.

В 2000 году многочисленные СМИ, в том числе ВВС, пророчили, что в начале 2002 года начнётся массовое производство автомобилей, использующих воздух вместо топлива.

Поводом для такого смелого заявления послужила презентация автомобиля под названием e.Volution на выставке Auto Africa Expo2000, которая состоялась в Йоханнесбурге.

Изумлённой общественности сообщили, что e.Volution может без дозаправки проехать около 200 километров, развивая при этом скорость до 130 км/час. Или же в течение 10 часов со средней скоростью 80 км/час. Было заявлено, что стоимость такой поездки обойдётся владельцу e.Volution в 30 центов. При этом весит машина всего 700 кг, а двигатель — 35 кг.

Революционную новинку представила французская фирма MDI (Motor Development International), которая тут же объявила о намерении начать серийный выпуск автомобилей, оборудованных двигателем на сжатом воздухе.

Изобретателем двигателя является французский инженер-моторостроитель Гай Негр (Guy Negre), известный, как разработчик пусковых устройств для болидов «Формулы 1» и авиационных двигателей.

Негр заявил, что ему удалось создать двигатель, работающий исключительно на сжатом воздухе без каких бы то ни было примесей традиционного топлива. Своё детище француз назвал Zero Pollution, что означает нулевой выброс вредных веществ в атмосферу.

Девизом Zero Pollution стало «Простой, экономичный и чистый», то есть упор был сделан на его безопасность и безвредность для экологии.

Принцип работы двигателя, по словам изобретателя, таков: «Воздух засасывается в малый цилиндр и сжимается поршнем до уровня давления в 20 бар. При этом воздух разогревается до 400 градусов. Затем горячий воздух выталкивается в сферическую камеру.

В „камеру сгорания“, хотя в ней уже ничего не сгорает, под давлением подаётся и холодный сжатый воздух из баллонов, он сразу же нагревается, расширяется, давление резко возрастает, поршень большого цилиндра возвращается и передаёт рабочее усилие на коленчатый вал.

Можно даже сказать, что „воздушный“ двигатель работает так же, как и обычный двигатель внутреннего сгорания, но только никакого сгорания тут нет».

Было заявлено, что выбросы автомобиля не опаснее углекислого газа, выделяемого при дыхании человека, двигатель можно смазывать растительным маслом, а электрическая система состоит всего лишь из двух проводов.

На заправку такого воздухомобиля требуется около 3 минут.

Представители Zero Pollution заявили, что для заправки «воздухомобиля» достаточно наполнить воздушные резервуары, расположенных под днищем автомобиля, что занимает около четырёх часов.

Но после громких заявлений и всеобщего ликования что-то произошло. Внезапно всё стихло и о «воздухомобиле» почти забыли.

Читайте также:  Автомобиль универсал для рыбалки

Тишина представляется тем более зловещей, что некоторое время назад «заглох» официальный сайт Zero Pollution. Причина нелепая: страница якобы не справляется с огромным потоком запросов. Впрочем, создатели сайта в расплывчатой форме обещают его когда-нибудь «улучшить».

Появление воздухомобилей на дорогах должно было стать серьезным вызовом традиционному транспорту.

Есть мнение, что экологичную разработку саботировали автомобильные гиганты: предвидев приближающийся крах, когда выпускаемые ими бензиновые двигатели никому не будут нужны, они якобы решили выскочку «задушить на корню».

Эту версию отчасти подтверждает Deutsche Welle: «Авторемонтные предприятия и нефтяные концерны единодушно считают автомобиль с воздушным двигателем „недоработанным“. Впрочем, это можно списать на их предвзятость.

Однако и многие независимые эксперты настроены скорее скептически, тем более что ряд крупных автомобилестроительных концернов — например, „Фольксваген“, — уже в 70-х и 80-х годах вели исследования в этом направлении, но затем свернули их ввиду полной бесперспективности».

Почти такого же мнения придерживаются и защитники окружающей среды: «Потребуется очень много времени, чтобы убедить автомобильных производителей начать выпуск „воздушных“ двигателей.

Автомобильные компании уже потратили огромное количество денег на эксперименты с электрическими автомобилями, которые оказались неудобными и дорогими. Им больше не нужны новые идеи».

Zero Pollution — двигатели с нулевым выбросом вредных веществ. Кроме этого, они легки и компактны.

Но Deutsche Welle обращает внимание на то, что в различных публикациях «описание двигателя и принципиальная схема его работы грешат неточностями и ошибками, а, кроме того, версии на разных языках не только изрядно различаются, но порой и прямо противоречат друг другу.

Чуть ли не в каждом издании приводятся свои, отличные от прочих, технические параметры. Разброс цифр столь велик, что невольно задаёшься вопросом: неужели они относятся к одному и тому же автомобилю?

Ещё одна странная закономерность состоит в том, что с каждой следующей публикацией параметры автомобиля улучшаются: то мощность подрастёт, то цена упадёт, то масса уменьшится, то ёмкость баллонов увеличится. Так что, сомнения тут вполне уместны и оправданы.

Однако ждать осталось недолго. Вероятно, уже в наступающем году мы точно узнаем, что же такое этот разработанный фирмой MDI двигатель на сжатом воздухе — революция в автомобилестроении или во всех смыслах слова „дутая“ сенсация».

Между тем, вполне возможно, что и в 2002 году интрига с «воздухомобилем» не разрешится. В результате продолжительных поисков информации в Сети был обнаружен один более-менее «живой» сайт, который обещает серийное производство революционных автомобилей в 2003 году.

Кстати, в процессе поисков было найдено много интересного на «воздушную» тему.

Любопытно, что на состоявшейся в феврале 2001 года в Нюрнберге международной ярмарке игрушек канадская фирма Spin Master предложила покупателям модель самолета, оснащённой двигателем, работающим на сжатом воздухе. Мини-резервуар можно надувать любым насосом, и пропеллеры уносят оригинальную игрушку в небеса.

Кроме того, в Интернете имеется коммерческое предложение, адресованное, по всей видимости, правительству Москвы. В этом документе одна столичная компания предлагает чиновникам «ознакомиться с предложением автомобильной фирмы MDI (Франция) о производстве в Москве абсолютно экологически чистых и экономичных автомобилей».

Встретилось и предложение В. А. Конощенко, который сообщает об изобретённом им автомобиле, работающем на сжатом воздухе, прилагая описание устройства.

Также попалось на глаза изобретение Раиса Шаймухаметова — «Садоход», который «приводится в движение от сжатого воздуха: под капотом небольшой двигатель и серийный компрессор. Воздух вращает автономно друг от друга два блока (слева и справа) эксцентрических роторов (поршней). Роторы в блоке через ходовые колеса соединены гусеничной цепью».

В итоге сложилось двоякое впечатление: с одной стороны не до конца понятная история с французским «воздухомобилем», а с другой — куда более чёткое ощущение, что «воздушный» транспорт давно используется и в особенности почему-то в России. И притом с позапрошлого века.

По мере приближения к объявленной дате выпуска в публикациях на эту тему разнобой все заметнее. Создается впечатление, что команда Ги Негра столкнулась с серьезными техническими проблемами. Чтобы разъяснить ситуацию, «Известия-Наука» обратились к самым авторитетным в нашей стране специалистам из Государственного научного центра «Научно-исследовательский автомобильный и автомоторный институт (НАМИ)».

Скептическое отношение к двигателю на сжатом воздухе вовсе не означает, в этом уверены специалисты НАМИ, что попытки найти альтернативу бензиновому двигателю обречены. Уже удалось добиться сносных характеристик у газовых двигателей на пропан-бутане, которые уступают по теплоотдаче топлива бензиновому двигателю только в 1,5 раза. Предпринимаются в продолжение заветов чонкинского приятеля Гладышева усилия, дабы освоить двигатель на биогазе, который получают из всяческих отбросов.

26 сентября 2016 в 22:56 (редактировалось 26 сентября 2016 в 22:56)

Источник

1500 бар — самое высокое давление в машине. И где оно?

Давление (и его антипод — разрежение) может возникнуть в любой замкнутой емкости — хотя бы из-за температурных перепадов. А если при этом задействованы механизмы, то колебания давления могут быть гораздо больше.

Любопытно, что даже в салоне машины давление воздуха обычно чуть выше атмосферного! Под воздействием вентилятора отопителя или скоростного напора воздух нагнетается в салон через дефлекторы. А в некоторых узлах и агрегатах оно выше в десятки раз.

Давление — движущая сила в автомобиле. Рассказываем, насколько велика его сила и что она может.

1. Камера сгорания — 60 бар (бензиновый мотор), 75 бар (дизель)

Этот параметр часто путают и с компрессией, и со степенью сжатия. Но это давление, которое возникает в момент сгорания топлива. Сильно «задирать» его нельзя, поскольку оно может разрушить кольца, вкладыши, клапаны. Тем не менее величина этого давления серьезная — даже у гражданских автомобилей.

2. Топливная система — до 1500 бар

В баке бензиновых и дизельных автомобилей поддерживается почти атмосферное давление. От изменений температуры или вследствие расхода топлива в нем может возникать легкое давление либо разрежение. В баке размещен насос, который подает топливо к двигателю с давлением не более 4 бар. В бензиновом двигателе с распределенным впрыс­ком топливо к форсункам поступает сразу, а в дизелях и моторах с непосредственным впрыском бензина в камеру сгорания стоят еще топливные насосы высокого давления. У бензиновых двигателей давление перед форсунками может достигать 100 бар. У дизелей давление после ТНВД может доходить до 1500 бар, и это самое высокое давление в автомобиле.

3. Система смазки двигателя — до 4 бар

Создается масляным насосом с приводом от коленчатого вала. При высокой частоте вращения насос обеспечивает избыточную производительность, поэтому ставят редукционный клапан для его регулирования. В последнее время всё чаще ставят насосы с переменной производительностью — они отбирают у мотора меньше мощности, ­экономят топливо и сокращают выбросы вредных газов в атмосферу.

4. Давление во впускном трубопроводе — до 2,5 бар

У наддувного двигателя (и бензинового, и дизельного) на минимальных оборотах холостого хода давление сравнимо с атмосферным, так как турбокомпрессор почти не вращается. Зато по мере роста нагрузки и оборотов двигателя турбокомпрессор выдает сначала номинальное давление, а затем пытается «перенаддуть» мотор. Но электронные и механические ограничители ему не дают развить большего давления — так возникает протяженная полка крутящего момента, очень удобная для управления тягой.

5. Система охлаждения двигателя — 1,5 бара

Образуется при нагревании охлаждающей жидкости. Давление ограничивает паровой клапан пробки радиатора или расширительного бачка. Это давление снижает риск закипания двигателя и уменьшает потери на испарение.

6. Разрежение во впускном трубопроводе — 0,8 бара

У атмосферного бензинового двигателя там всегда разрежение, которое возникает из-за дроссельной заслонки и сопротивления воздушного фильтра. Максимальной величины достигает при торможении двигателем. Большое разрежение возникает при минимальных оборотах холостого хода, малое — при полностью открытом дросселе.

7. Перед турбиной — до 2 бар

Для вращения турбокомпрессора используются отработавшие газы. Давление перед турбиной ограничивают, тем самым регулируя производительность компрессора: перепускной клапан отводит часть выпускных газов мимо турбины. Бывают и турбины с регулиру­емым сопловым аппаратом, управляемым электроникой.

8. Система выпуска отработавших газов — до 1 бара

Это давление возникает после выпускного коллектора у атмосферных моторов и после турбокомпрессора в наддувных. Оно обусловлено сопротивлением сот каталитического нейтрализатора. Существенно увеличивается при разрушении и оплавлении керамических сот, а также при механическом повреждении трубы системы выпуска.

9. Управление трансмиссией — 5 бар (АКП), 7,5 бар (вариатор), 60 бар (робот)

Речь о давлении рабочей жидкости для управления элементами коробок. Здесь и поршни, отвечающие за сжатие лент и пакетов фрикционов, и перемещение конусов вариаторов, и включение передач в роботах. Такой разброс обусловлен применением в роботах отдельного электрического насоса высокого давления.

10. Тормозная система — до 180 бар

В старых автомобилях без АБС давление в контурах тормозной системы определял водитель: как нажмет на педаль, столько и получится (с учетом помощи вакуумного усилителя). Сейчас же за этой физической силой следит АБС. Ее гидронасос может создавать давление до 180 бар, но это не значит, что такое давление постоянно напрягает тормозные шланги. Это необходимо для увеличения быстродействия механизма. На практике максимальным давление бывает лишь в экстренных случаях.

11. Система кондиционирования — 4 бара (при заправке), 20 бар (рабочее)

Принцип действия основан на переходах хладагента из жидкого состояния в газообразное при изменении давления. Однако при этом начальное давление в системе также необходимо. В результате работы компрессора давление в трубках может достигать 20 бар.

12. Разрежение в вакуумном усилителе — до 0,8 бара

Разрежение в нем не всегда равно разрежению во впускном трубопроводе, хотя они и соединены шлангом. Применен обратный клапан, который позволяет вакуумному усилителю «хранить запас разрежения» даже после остановки двигателя. Его хватает еще на несколько торможений.

13. Амортизаторы — до 30 бар

Прошли времена, когда при заделке крышки амортизатора в нем оставался атмосферный воздух. Теперь в амортизаторах используют инертный газ либо с небольшим давлением, либо со значительным газовым подпором. Если шток амортизатора можно легко вдавить руками, газовый подпор не превышает 1 бар. Газовый подпор приподнимает автомобиль и делает подвеску немного жестче.

14. Пневмоподвеска — 16 бар

В пневмоподвесках автомобилей давление обеспечивает насос, забирающий атмосферный воздух через фильтр. Обычно в пневмосистемах подвески легковых ­автомобилей используются давления, не превышающие 16 бар.

15. Газовые упоры — 120 бар

В газовых упорах, которые помогают открывать двери багажных отсеков и капоты, рабочим телом является азот, сжатый в некоторых изделиях до 120 бар. Любопытно, что наполняют газовые упоры, когда они полностью собраны, через штатное уплотнение штока, работа­ющее как обратный клапан.

16. Шины — 1,8–2,8 бара

Единственное давление, за поддержание которого ответственность лежит на водителе, а потому и нуждается в достаточно частой проверке. Шины несут основную нагрузку от массы автомобиля, от правильного давления в них зависит комфорт и безопасность.

Поэтому надо соблюдать рекомендации завода-изготовителя автомобиля.

Читайте также:  Автосалоны подержанных автомобилей на мкаде

Источник

Mechanoid › Блог › Аэродинамика. Часть 1. Прижимная и подъемная силы.

Аэродинамика. Часть 1. Подъемная сила

Итак, продолжу серию постов про аэродинамику и ее использование в автомобиле.

Каждый когда-нибудь видел, как болиды формулы 1, проносясь мимо оператора с камерой, во время дождевых гонок поднимают за собой красивые шлейфы водяного тумана. Как один болид «вешается на хвост» другому, а потом совершает резкий маневр и через несколько секунд оказывается впереди него. Как без всякой видимой причины во время ралли отрываются спойлеры и антикрылья — в эти моменты все вспоминают про аэродинамику.

Аэродинамика, как магия, наука о воздухе — о том, что скрыто от человеческого глаза, но в тоже время таит в себе большую силу. Она многолика, так как воздух окружает нас повсюду. Благодаря аэродинамике летают самолеты, а лыжники с максимальной скоростью несутся по склону горы, приняв наилучшее положение для обтекания. Но в контексте драйв2 область наших интересов в аэродинамике ограничивается автомобилями — о них и поговорим)
Все слышали про Джереми Кларксона, (в прошлом одного из ведущих TopGear`а и на мой взгляд лучшего автомобильного журналиста), но мало кто слышал про Эдриана Ньюи, который учился в старших классах вместе с Джереми. А между тем, Эдриан Ньюи — гениальный инженер-конструктор, один из самых успешных в истории мирового автоспорта! Болиды, сконструированные под его руководством для разных команд, три раза побеждали в знаменитой гонке Индианаполис-500, в гонках Формулы-1 принесли победу в 150 Гран-при, 10 чемпионских титулов и 10 Кубков Конструкторов. Его по праву считают гением аэродинамики, практически волшебником. Посмотрите на любое из его творений и представьте, как оно врезается в стену воздуха, как своими грациозными обводами направляет поток именно туда, куда нужно.

Работа аэродинамика в чем-то напоминает работу скульптора — нужно убрать все лишнее и оставить самую суть. Посмотрите на простую каплю дождя. Это и есть идеальная форма, созданная самим воздухом. Именно так он хочет обтекать движущееся в нем тело.

Задача специалистов по аэродинамике создать такую форму, которую воздуху будет удобно обтекать, и, обтекая которую, он принесет максимум пользы. Давайте вернемся к кузову автомобиля и разберемся в том, как на него воздействует набегающий поток воздуха. Хотя по своей сути набегающий поток, это своего рода условность. Потому что на самом деле автомобиль «набегает» на неподвижный воздух. Но такую систему координат неудобно рассматривать и анализировать, поэтому свяжем ее с автомобилем. В этом случае воздух будет двигаться относительно неподвижного автомобиля.
Прежде чем рассматривать взаимодействие автомобиля с потоком, необходимо ознакомиться с некоторыми основами аэродинамики, которые понадобятся нам в дальнейшем.

В аэродинамике великое множество различных формул, уравнений/зависимостей и законов. Целью данного повествования является общее ознакомление с аэродинамикой, поэтому я не буду вдаваться в это поражающее своим разнообразием обилие символов и чисел, рассмотрим только два из основных законов.
Первый мы видим каждый день. Представьте себе кран. Обыкновенный кран в ванной комнате или на кухне, из которого спокойно вытекает струя воды. Давайте взглянем на нее повнимательнее. Что мы видим? Она сужается! На самом деле все очень просто — каждая «частичка» воды, находится под действием гравитации. Значит на каждую частицу действует ускорение свободного падения, и каждая частица по мере удаления от крана падает все быстрее. Если взять и мысленно рассечь струю у самого крана и на некотором удалении от него, то мы увидим, что через полученные сечения будут двигаться частицы воды: у крана — с малой скоростью, а на отдалении — с большей. Если площадь сечений будет постоянной, то через более удаленное сечение в единицу времени будет проходить больше жидкости, чем через менее удаленное. Но откуда она возьмется, если кран у нас один и напор воды в нем постоянный? Поэтому площадь поперечного сечения струи уменьшается с ростом скорости течения и через каждое сечение проходит одно и то же количество жидкости.

Этот простой пример отражает смысл уравнения неразрывности: чем меньше площадь сечения, через которое течет жидкость, тем больше ее скорость. А причем здесь воздух, спросите вы? Оказывается, у жидкостей и газов много общего, и поведение газа при небольших скоростях во многом повторяет поведение жидкости. Поэтому уравнение неразрывности распространяется и для газовых течений. Главное, чтобы скорости не были очень большими, поскольку в этом случае газ можно считать почти несжимаемым. При больших скоростях газ начинает сжиматься. Например, на сверхзвуке уменьшение площади сечения приведет к появлению пульсаций уплотнения и снижению скорости. Но поскольку мы не рассматриваем автомобили-ракеты, пронзающие воздух на соляных озерах в погоне за очередным земным рекордом скорости, поскольку даже безумно быстрый Bugatti Veyron в два с лишним раза медленнее скорости звука, мы смело можем брать на вооружение уравнение неразрывности.

Второе уравнение называется уравнением Бернулли и говорит о законе сохранения энергии, выраженном через давления. Давление бывает полным, статическим и динамическим. Полное давление как раз и складывается из статического и динамического давлений:

Статическое давление не зависит от скорости. То есть в движущемся с некоторой скоростью потоке для того, чтобы замерить статическое давление, необходимо двигаться со скоростью потока. В этом случае скорость потока относительно измерительного устройства (манометра) будет равно нулю.
Динамическое давление, напротив, зависит от скорости. Причем, что очень важно, не просто от скорости, а от квадрата скорости. Представьте себе неподвижный газ, находящийся в некотором объеме. Элементарные частицы газа хаотично перемещаются на микроуровне (броуновское движение). При этом они сталкиваются друг с другом и со стенками резервуара, в котором газ находится. Вот эти вот удары о стенки сосуда и создают давление. В данном случае это будет статическое давление, которое равно полному. Другими словами – динамическая составляющая давления отсутствует. Теперь если заставить этот же газ течь по трубе с какой-либо отличной от нуля скоростью, то часть энергии элементарных частиц уйдет на движение газа на макроуровне (перемещение больших объемов). А на удары о стенки трубы, по которой движется газ, у элементарных частиц останется меньше энергии. Поэтому статическое давление уменьшится по сравнению с первым случаем на величину динамической составляющей. В принципе этот пример и иллюстрирует уравнение Бернулли.

Воздействие набегающего на автомобиль потока воздуха сводят к аэродинамическим силам. В контексте этого поста нас будут интересовать сила лобового сопротивления, направленная в сторону, противоположную движению автомобиля, и подъемная сила, перпендикулярная плоскости, в которой движется автомобиль, снизу вверх (отрицательная подъемная сила называется прижимной и направлена сверху вниз).

Аэродинамические силы вычисляются по формулам:

Всем, кто учился в школе, известно из курса физики, что сила – это произведение давления на площадь. Но форма автомобиля достаточно сложна и на практике довольно трудно определить, на какую именно площадь какое давление действует. Поэтому берут уже знакомую нам динамическую составляющую давления (которая на вышеприведенных формулах выделена фиолетовым цветом, её еще называют скоростным напором) и умножают на некоторую характерную площадь, например на площадь поперечного сечения — так называемое миделевое сечение — (от нидерл. middel, буквально — средний, середина). А все особенности и нюансы учитывает одно число — аэродинамический коэффициент, который обозначается Сх или Су. Другими словами — это коэффициент незнания. Вычислить его теоретически очень сложно, а единственный достоверный метод определения — продувки в аэродинамической трубе или компьютерное моделирование.

Итак, вернёмся к кузову автомобиля и рассмотрим, каким образом формируется подъемная (или прижимная) сила.
Встретившись с автомобилем, набегающий поток воздуха разделяется. Одна часть потока уходит вниз, под днище автомобиля, а другая обтекает его сверху. Рассмотрим сначала поток, устремившийся под автомобиль. Все, что связано с движением потока под автомобилем так или иначе связано с английским словосочетанием «граунд-эффект» (эффект земли). А смысл граунд-эффекта объясняется при помощи уравнения Бернулли. Представьте себе крыло дозвукового самолета. Основная его особенность заключается в том, что профиль (сечение) этого крыла несимметричен, и поток над крылом должен пройти больший путь, чем поток под крылом. Таким образом, поток над крылом разгоняется, а это, согласно уравнению Бернулли, приводит к уменьшению статического давления. Разница между давлением под крылом и над крылом приводит к появлению подъемной силы. Но если взять и перевернуть это крыло, то подъемная сила превратится в прижимную.

В этом и заключается граунд-эффект: если спрофилировать днище особым образом, то поток под автомобилем будет разгоняться, что приведет к формированию зоны с пониженным давлением.Сделать днище такой формы, чтобы оно повторяло профиль дозвукового крыла достаточно проблематично, поскольку при проектировании спортивного автомобиля все не сводится к одной аэродинамике: необходимо как можно ниже опустить центр масс, обеспечить наилучшую развесовку по осям, оптимально разместить элементы подвески, трансмиссии и т.д. Кроме того, появление зоны с низким давлением под днищем неминуемо вызовет эффект пылесоса: воздух из зоны с высоким давлением устремится в зону с низким давлением, поэтому для предотвращения этого необходимо использовать боковые юбки, мешающие подсосу воздуха по бокам. Кстати, на спортивных автомобилях разряжение от действия граунд-эффекта настолько велико, что способно открыть чугунный канализационный люк, над которым проносится автомобиль.

Как видно, граунд-эффект требует выполнения множества условий одновременно. Реализовать их все пытались в Формуле 1 в конце 70-х – начале 80-х. Для болидов тех времен характерны минимальный клиренс, профилированное дно, боковые юбки. Тогда же на этапе гран-при первый и последний раз появилось легендарное творение великого хитреца из ЮАР Гордона Мюррея — болид Brabham BT46B, прозванный гоночным пылесосом. На нем был установлен вентилятор в задний части, служащий якобы для охлаждения двигателя. Во всяком случае, так обосновывалось его наличие с точки зрения согласования с техническим регламентом. Но на самом деле этот вентилятор откачивал воздух из под болида. Это давало колоссальное преимущество и позволило пилоту Ники Лауде одержать уверенную победу в дебютной для этого гоночного пылесоса гонке. После этого на команду обрушилась лавина протестов и дальновидный Берни Эклстоун, руководивший Brabham в те времена, снял машину с соревнований, дабы не портить себе репутацию.
Вот как это выглядело сзади:

Кстати, на заре Формулы 1 было очень много интересных, а порой и абсурдных инженерных решений, пожалуй, они стоят упоминания в отдельном посте. В среду/четверг напишу об этом отдельную статью, первые шаги аэродинамики в автоспорте — это действительно очень забавно))

Так вот, благодаря граунд-эффекту болиды с одной стороны действительно стали чудесным образом «прилипать» к трассе. Но с другой – его применение оказалось небезопасным, поскольку стоило автомобилю подскочить на кочке, как под него сразу устремлялся воздух из областей с большим давлением, прижимная сила мгновенно падала, и болид терял устойчивость. А если происходил контакт или по каким-то другим причинам разрушались юбки, то эффективность граунд-эффекта падала на порядки. Опасность заключалась еще и в том, что значительно возросли скорости и перегрузки, особенно в поворотах, и любая потеря прижимной силы вела к опасной ситуации. Поэтому руководством Формулы 1 использование граунд-эффекта было запрещено. Но это совсем не означает, что о нем забыли. Запрет лишь положил начало новому раунду борьбы конструкторов с техрегламентом. А основной принцип граунд-эффекта: разгон потока под днищем и создание разряжения, — широко применяется в автоспорте и по сей день.
Если заглянуть под любой среднестатистический автомобиль, то первое, что попадает нам на глаза — это элементы двигателя и трансмиссии, выхлопной и топливной систем, а так же детали подвески. Все они своими выступающими частями тормозят поток, делают течение под днищем вихревым (турбулентным), что приводит к снижению скорости потока и росту статического давления. Поэтому, если заглянуть под спортивный автомобиль, то вы увидите ровное дно с пластиковыми накладками, скрывающими отверстия и выступающие элементы.

Читайте также:  Автомобиль ока для женщин

Вспоминаем уравнение неразрывности: чтобы увеличить скорость надо уменьшить площадь канала, по которому течет газ. Область между днищем и дорожным полотном является своего рода каналом. Значит надо уменьшить клиренс. У спортивных автомобилей он настолько мал, что зачастую мы видим, как из под дна вырываются искры, образующиеся при соприкосновении его с асфальтом. Кроме того, под автомобиль стараются пускать как можно меньше воздуха. Чем меньше воздуха попадет под дно, тем меньшее давление он сможет создать. Поэтому передний бампер спорткаров украшают массивные спойлеры, отсекающие часть воздуха, стремящегося ворваться под днище автомобиля. Цель ограничить количество воздуха, проникающего под автомобиль, преследуют и юбки по бокам, о которых уже упоминалось выше.

Неотъемлемой частью современных гоночных автомобилей стал диффузор. Диффузор – это вариация на тему профилированного дна. Спрофилировать все дно проблематично, а в ряде гоночных серий это просто запрещено регламентом. Например, в Формуле-1 дно плоское и ступенчатое (дно в области боковых понтонов выше, чем дно в центральной части, где расположена доска скольжения). Казалось бы, реализовать хоть какое-то подобие граунд-эффекта в данной ситуации невозможно. Оказывается, возможно, благодаря использованию диффузора.

Рассмотрим, что происходит в области задней части днища при отсутствии диффузора.
За автомобилем находится зона разряжения. Когда поток, вырывающийся из под днища, начинает взаимодействовать с этой зоной, он резко замедляется. Это можно проиллюстрировать, рассмотрев данный процесс на упрощенном микроуровне элементарных частиц. Когда частицы газа движутся под днищем, они сталкиваются, отскакивают от днища и вновь сталкиваются, передавая тем самым энергию друг другу. Одна частица может потерять энергию, подтолкнув другую, но тут же получит энергию от третьей, та от четвертой и так далее. Таким образом, скорость потока поддерживается на определенном уровне. Когда же днище кончается, частицы не могут отталкиваться от него и часть из них устремляется в зону разряжения за автомобилем. Там взаимодействие между частицами уже не столь интенсивное, как это было под днищем. Поэтому энергия рассеивается, а скорость частиц падает. В том месте, где днище заканчивается, образуется вихревая зона. В этой области поведение потока непредсказуемо, он «не знает», куда ему двигаться: то ли в прежнем направлении, толи в зону с пониженным давлением. В вихревой зоне давление и скорость падают. В результате разгоняемый под днищем поток упирается в вихревую зону и теряет часть своей скорости, ну а последствия уже описывались: падение динамической составляющей давления, рост статической.

Диффузор представляет собой расширяющийся к концу болида участок днища. За счет того, что объем диффузора увеличивается, образуется зона разряжения. А вихри, которые образовывались без диффузора, уменьшаются. То есть диффузор как бы засасывает воздух из под днища и оптимизирует потоки в задней части. У диффузора кроме горизонтальных иногда имеются и вертикальные элементы, «причесывающие» поток и тем самым стабилизирующие его. У современных болидов Формулы 1 порядка 40 % прижимной силы создаётся благодаря работе диффузора.

С тем, что происходит под автомобилем, мы разобрались. Теперь проследим за другим потоком, который огибает кузов автомобиля сверху. Если представить, что автомобиль движется в некоем канале, то окажется, что площадь этого канала уменьшается. Поэтому скользя по капоту, проносясь над лобовым стеклом, поток ускоряется, а статическое давление падает. Проходя над крышей, поток движется с постоянной скоростью, после чего замедляется в области заднего стекла и багажника. Но, даже несмотря на замедление, скорость потока сверху все равно может оказаться выше, чем скорость потока под автомобилем. Получается некоторое подобие авиационного крыла — за счет разности давлений возникает подъемная сила, и автомобиль «пытается взлететь». Для гражданских автомобилей хорошим результатом является сведение подъемной силы к нулю. Перед конструкторами гоночных болидов стоит более сложная задача: нужно прижать автомобиль к земле, создав прижимную силу. Посмотрим, что для этого придумали инженеры-конструкторы.
Во-первых, не стоит забывать о динамической составляющей давления.
Рассмотрим простой пример: Возьмем тонкую пластинку и направим поток воздуха параллельно плоскости этой пластинки. В этом случае влияние динамической составляющей на поверхность пластинки минимально. Теперь придадим пластинке некоторый угол атаки – угол между потоком и плоскостью пластинки. В авиации принято считать положительным угол атаки, образуемый вращением аэродинамической поверхности по часовой стрелке. Мы же повернем нашу пластинку против часовой стрелки, на отрицательный угол атаки (так называемый угол контратаки). С одной стороны площадь воображаемого канала уменьшится, а скорость потока возрастет. Это приведет к падению статического давления. Но наша пластина не полетит вверх, поскольку кроме ударов элементарных частиц газа на микроуровне (статическое давление) на пластинку будут оказывать влияние массы воздуха, движущиеся со скоростью потока (динамическая составляющая). Поэтому пластинка будет прижиматься вниз. То же самое происходит в области капота и лобового стекла. Придав им правильную форму, можно скомпенсировать падение статического давления увеличением влияния динамической составляющей. Но ничего не проходит бесследно. Посмотрим на нашу пластинку под углом атаки повнимательнее. Кроме того, что она прижимается вниз, она стремится сдвинуться назад. Именно так проявляется лобовое сопротивление (о котором речь пойдет в следующем посте). Поэтому необходимо искать компромисс между прижимной силой и лобовым сопротивлением.
Другой способ создать прижимную силу пришел прямиком из авиации. Если развернуть крыло, то вместо подъемной силы оно будет создавать прижимную. Эта идея перевернула гоночный мир с ног на голову в конце 60х годов, когда нелепые антикрылья стали появляться на болидах Формулы-1. С тех пор конфигурация и строение антикрыльев сильно изменилась, но основная идея осталась неизменной: ускорить поток под крылом и тем самым уменьшить статическое давление. У формульных болидов антикрылья вообще играют особую роль. Аэродинамика болидов с открытыми колесами значительно отличается от аэродинамики классических автомобилей: нет привычного капота, лобового и заднего стекла, багажника. Зато есть возможность установить массивные антикрылья спереди и сзади. Они создают свыше 50 % прижимной силы современных болидов Формулы 1. Формульные антикрылья состоят из нескольких плоскостей. Это обусловлено тем, что таким образом в ограниченные габариты можно уместить больше плоскостей, создающих прижимную силу. Но есть еще одна особенность, стимулирующая применение составных антикрыльев.

Если взять обычный авиационный дозвуковой профиль и перевернуть его, то окажется, что для его эффективной работы нужны достаточно большие по автомобильным меркам скорости. Современные пассажирские самолеты взлетают на скорости 250 км/ч, а средняя скорость на гран-при Монако, где прижимная сила нужна как воздух, 150 км/ч. Плюс надо учитывать, что больше всего прижимная сила нужна в поворотах, где скорость как раз таки падает. Антикрылья можно установить под некоторым углом атаки. Но угол этот можно менять в достаточно узком диапазоне, поскольку при больших углах атаки за крылом образуется вихревая зона и значительно возрастает лобовое сопротивление. Поэтому инженеры придумали изгибать профиль. В этом случае поток, разворачиваясь, движется по дуге с некоторым радиусом и в нем возникают центробежные силы, дополнительно прижимающие антикрыло. Но гнуть крылья тоже можно в определенных пределах, поскольку при большой кривизне за ними возникает зона разряжения, способствующая вихреобразованию. Если же антикрыло сделать составным, то в щели между планками будет проникать воздух. Это позволяет уменьшить разряжение и исключить вихри. У автомобилей классической схемы антикрыло устанавливается только сзади. Наверняка вы обращали внимание, что часто антикрылья на спортивных автомобилях расположены достаточно высоко и отнесены назад. Это обусловлено тем, что наилучшим образом крыло работает в чистом, невозмущенном, ламинарном потоке.
Говоря об антикрыльях, следует упомянуть про торцевые пластины. Место окончания антикрыла — его торцы — является источником вихрей, поскольку воздух, разрезаемый крылом имеет одну скорость, а воздух, не попавший на крыло – другую. При взаимодействии этих потоков, частицы газа начинают перемешиваться, что приводит к возникновению вихрей. Если же установить торцевые пластины, то эти потоки будут разделены.

Часто можно услышать мнение, что антикрыло и спойлер – это одно и то же. На самом деле, это совершенно разные аэродинамические элементы.
Антикрыло создает разность скоростей за счет того, что разделяет поток на две части, и эти две части потока проходят разные пути с разной скоростью.
Спойлер же изменяет направление потока, но не разделяет его. Он может создавать прижимную силу за счет использования динамической составляющей давления (вспоминаем пластинку, установленную под углом атаки).

Очень важным аспектом в создании прижимной силы является баланс — соотношение между прижимной силой, действующей на переднюю и заднюю оси. Можно добиться большой прижимной силы за счет большого диффузора и массивного антикрыла. Но оба эти элемента располагаются сзади, а значит и львиная доля полученной прижимной силы придется на заднюю ось. Если автомобиль заднеприводный да еще и заднемоторный, то это приведет к избыточной поворачиваемости и склонности к заносу. Если автомобиль переднеприводный, то это добавит ему стабильности в поворотах. И таких комбинаций множество. Поэтому баланс — это очень тонкое искусство. Иногда инженерам-конструкторам приходится даже специально уменьшать прижимную силу, а то и создавать подъемную, чтобы обеспечить наилучший баланс.

Подведем промежуточные итоги:
Автомобили «хотят летать», и перед инженерами стоит непростая задача заставить их прилипать к дороге. Для этого поток воздуха под автомобилем всеми силами стараются ускорить и удержать в стабильном, ламинарном (безвихревом) состоянии. Над автомобилем поток ускоряется и без помощи конструкторов. Его нужно обуздать и заставить работать так, как надо, при помощи правильных обводов кузова, обтекателей, спойлеров и антикрыльев. В этой борьбе важна каждая мелочь, даже такая, как зеркало заднего вида. Аэродинамика – это своего рода искусство. Это не просто наука с сухими формулами, таблицами и графиками. За ними скрываются красивейшие процессы, которые человек издавна пытается понять и подчинить.

Вот красивое видео, которое показывает важность аэродинамики в современном автоспорте:

На этом в принципе хотелось бы закончить рассказ о подъемной и прижимной силах)

Вторая часть статьи находится ТУТ
Третья часть ЗДЕСЬ

Источник

Ответы на популярные вопросы