Автомобиль начинает ускоряться чему равно его ускорение

MechCommander › Блог › Расчёт минимально возможного времени разгона

На написание данной статьи меня подтолкнуло следующее видео:

Используемые в нём расчёты основаны на школьном курсе физики.
Начнём с того, что время t разгона до заданной скорости v (например, до 100 км/ч) определяется по формуле

Вообще говоря, в силу разных причин ускорение меняется по мере разгона, но мы можем оценить его максимальную величину a_max, тем самым найдя минимально возможное время разгона t_min.

Согласно второму закону Ньютона ускорение a любого тела прямо пропорционально приложенной к телу силе F и обратно пропорционально его массе m:

Как известно, на ровной дороге автомобиль ускоряется за счёт силы трения между шинами и поверхностью дороги. Максимальная величина силы трения F_max определяется по формуле

F_max = μN, (3)
где
μ — коэффициент трения покоя (для большинства летних гражданских шин μ ≈ 1);
N — нормальная сила давления.

Заметим, что при пробуксовке ведущих колёс коэффициент трения покоя меняется на коэффициент трения скольжения, который приблизительно вдвое меньше. Поэтому при пробуксовке тяга, а в след за ней и ускорение, падают не менее чем вдвое.

Таким образом, зная силу N, приходящуюся на ведущие колёса автомобиля, можно определить максимальную тягу, создаваемую шинами, а уже по ней найти ускорение и время разгона.

1 ПОЛНОПРИВОДНЫЕ АВТОМОБИЛИ

Для полноприводных автомобилей эта сила N равна весу P автомобиля:

N = P = mg, (4)
где
m — масса автомобиля, кг;
g — ускорение свободного падения (9.81 м/с²).

Если подставить (2), (3) и (4) в (1), то получится

что для v = 100 км/ч = 27.78 м/c даёт

t_min ≈ 27.78/9.81 = 2.83 с

2 МОНОПРИВОДНЫЕ АВТОМОБИЛИ

С моноприводными автомобилями ситуация иная. У них за счёт продольного переноса веса во время разгона сила N будет определяться по формуле

N = δP ± maH/B = m∙(δg ± aH/B), (6)
где
δ — статическая доля веса автомобиля, приходящаяся на ведущую ось;
a — ускорение (2), с которым разгоняется автомобиль, м/с²;
H — высота центра тяжести автомобиля, мм;
B — колёсная база, мм.

При этом в случае заднеприводных автомобилей в формуле (6) используется знак «+», а в случае переднеприводных — знак «−».

Если подставить (3) и (6) в (2), то получится

откуда находим максимально возможное ускорение автомобиля:

Осталось подставить (7) в (1):

В формулах (7) и (8) знак «−» уже используется для заднеприводных автомобилей, а знак «+» — для переднеприводных.

Из выражения (8) видно, что при равномерной загрузке осей заднеприводный автомобиль потенциально будет разгоняться быстрее переднеприводного.

Оценим минимально возможное время разгона а/м Lada Granta. Для этого автомобиля известно, что статическая развесовка составляет 60/40, а база равна 2476 мм. В качестве высоты центра тяжести примем ⅓ от полной высоты автомобиля, т.е. 500 мм. Тогда по формуле (8) получаем

Видно, что по сравнению с полноприводным автомобилем это время оказалось вдвое дольше.

Теперь занизим центр тяжести нашей Гранты на 100 мм:

t_min ≈ (1 + 400/2476)∙27.78/(0.6∙9.81) = 5.48 с

С помощью такого занижения время разгона удалось сократить всего на 0.2 с

Посмотрим, что будет, если мы поставим гоночные шины с коэффициентом трения μ = 1.2:

t_min = (1 + 1.2∙400/2476)∙27.78/(0.6∙1.2∙9.81) = 4.70 с

Разница с исходным вариантом составляет уже почти 1 с, т.е. такая модификация сильнее влияет на сокращение времени разгона.

Найдём оценку минимальной мощности, выдаваемой двигателем, при которой рассчитанное время разгона становится достижимым.

Кинетическая энергия T автомобиля (как и любого другого тела) определяется по формуле

Тогда мощность с колёс во время разгона не должна быть меньше:

Здесь мы пренебрегли силами сопротивления качения и сопротивления воздуха.

Для рассмотренной выше Гранты со снаряженной массой 1160 кг на штатных шинах получается

W_min ≥ 1160∙27.78²/(2∙5.48) = 81.7 кВт = 110 л.с.

Обычно потери в трансмиссии составляют около 25%, что даёт оценку на минимальную мощность двигателя почти 140 л.с. К этому надо добавить мощность сил сопротивления, которые можно оценить в 10% от рассчитанной минимальной мощности с колёс.

Таким образом, если во время разгона мощность с колёс не будет падать ниже 120 л.с. (а мощность двигателя не будет падать ниже 150 л.с.), то минимально возможное время разгона становится достижимым.

Обычно во время разгона обороты двигателя не опускаются ниже 3000 об/мин. При таких оборотах мощность мотора составляет приблизительно половину от максимальной. Следовательно, минимально возможное время разгона можно ожидать на Гранте с двигателем не менее 300 л.с.

P.P.S. Дополнение, касающееся минимально возможного времени заезда на четверть мили

При равноускоренном движении пройденный путь S вычисляется по формуле

Читайте также:  Автомобиль прошел расстояние между двумя городами

откуда легко выражается время

По этой формуле для полноприводного автомобиля получается

Источник

Автомобиль начинает ускоряться чему равно его ускорение

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Это задание ещё не решено, приводим решение прототипа.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

Источник

I. Механика

Тестирование онлайн

Равноускоренное движение

Физическая величина, характеризующая то, на сколько каждый раз увеличивается скорость называется ускорением.

Ускорение тела

Эту формулу чаще всего при решении задач применяют в видоизмененном виде:

Направление вектора ускорения

Направление вектора ускорения изображено на рисунках

На этом рисунке машина движется в положительном направлении вдоль оси Ox, вектор скорости всегда совпадает с направлением движения (направлен вправо). Когда вектор ускорение совпадает с направлением скорости, это означает, что машина разгоняется. Ускорение положительное.

При разгоне направление ускорения совпадает с направлением скорости. Ускорение положительное.

На этом рисунке машина движется в положительном направлении по оси Ox, вектор скорости совпадает с направлением движения (направлен вправо), ускорение НЕ совпадает с направлением скорости, это означает, что машина тормозит. Ускорение отрицательное.

При торможении направление ускорения противоположно направлению скорости. Ускорение отрицательное.

Разберемся, почему при торможении ускорение отрицательное. Например, теплоход за первую секунду сбросил скорость с 9м/с до 7м/с, за вторую секунду до 5м/с, за третью до 3м/с. Скорость изменяется на «-2м/с». 3-5=-2; 5-7=-2; 7-9=-2м/с. Вот откуда появляется отрицательное значение ускорения.

При решении задач, если тело замедляется, ускорение в формулы подставляется со знаком «минус».

Перемещение при равноускоренном движении

Дополнительная формула, которую называют безвременной

Формула в координатах

Связь со средней скоростью

При равноускоренном движении среднюю скорость можно рассчитывать как среднеарифметическое начальной и конечной скорости

Из этого правила следует формула, которую очень удобно использовать при решении многих задач

Соотношение путей

Если тело движется равноускоренно, начальная скорость нулевая, то пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел.

Главное запомнить

Упражнения

Поезд движется равноускоренно с ускорением a (a>0). Известно, что к концу четвертой секунды скорость поезда равна 6м/с. Что можно сказать о величине пути, пройденном за четвертую секунду? Будет ли этот путь больше, меньше или равен 6м?

Так как поезд движется с ускорением, то скорость его все время возрастает (a>0). Если к концу четвертой секунды скорость равна 6м/с, то в начале четвертой секунды она была меньше 6м/с. Следовательно, путь, пройденный поездом за четвертую секунду, меньше 6м.

Читайте также:  Автомобиль с круглой кабиной

Какие из приведенных зависимостей описывают равноускоренное движение?

Уравнение скорости движущегося тела . Каково соответствующее уравнение пути?

*Автомобиль прошел за первую секунду 1м, за вторую секунду 2м, за третью секунду 3м, за четвертую секунду 4м и т.д. Можно ли считать такое движение равноускоренным?

В равноускоренном движении пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел. Следовательно, описанное движение не равноускоренное.

Источник

Перемещение и путь при равноускоренном прямолинейном движении

теория по физике 🧲 кинематика

Геометрический смысл перемещения заключается в том, что перемещение есть площадь фигуры, заключенной между графиком скорости, осью времени и прямыми, проведенными перпендикулярно к оси времени через точки, соответствующие времени начала и конца движения.

При равноускоренном прямолинейном движении перемещение определяется площадью трапеции, основаниями которой служат проекции начальной и конечной скорости тела, а ее боковыми сторонами — ось времени и график скорости соответственно. Поэтому перемещение (путь) можно вычислить по формуле:

Пример №1. По графику определить перемещение тела в момент времени t=3 с.

Перемещение есть площадь фигуры, ограниченной графиком скорости, осью времени и перпендикулярами, проведенными к ней. Поэтому в нашем случае:

Извлекаем из графика необходимые данные:

Подставляем известные данные в формулу:

Перемещение равно 0, так как тело сначала проделало некоторый путь, а затем вернулось в исходное положение.

Варианты записи формулы перемещения

Конечная скорость движения тела часто неизвестна. Поэтому при решении задач вместо нее обычно подставляют эту формулу:

В итоге получается формула:

Если движение равнозамедленное, в формуле используется знак «–». Если движение равноускоренное, оставляется знак «+».

Если начальная скорость равна 0 (v = 0), эта формула принимает вид:

Если неизвестно время движения, но известно ускорение, начальная и конечная скорости, то перемещение можно вычислить по формуле:

Пример №2. Найти тормозной путь автомобиля, который начал тормозить при скорости 72 км/ч. Торможение до полной остановки заняло 3 секунды. Модуль ускорения при этом составил 2 м/с.

Перемещение при разгоне и торможении тела

Все перечисленные выше формулы работают, если направление вектора ускорения и вектора скорости совпадают ( а ↑↑ v ). Если векторы имеют противоположное направление ( а ↑↓ v ), движение следует описывать в два этапа:

Этап торможения

Время торможения равно разности полного времени движения и времени второго этапа:

Когда тело тормозит, через некоторое время t1 оно останавливается. Поэтому скорость в момент времени t1 равна 0:

При торможении перемещение s1 равно:

Этап разгона

Время разгона равно разности полного времени движения и времени первого этапа:

Тело начинает разгоняться сразу после преодоления нулевого значения скорости, которую можно считать начальной. Поэтому скорость в момент времени t2 равна:

При разгоне перемещение s2 равно:

При этом модуль перемещения в течение всего времени движения равен:

Полный путь (обозначим его l), пройденный телом за оба этапа, равен:

В данном случае движение нужно разделить на два этапа, так как мальчик сначала разогнался, потом затормозил. Тормозной путь будет соответствовать второму этапу. Через него мы выразим ускорение:

Из первого этапа (разгона) можно выразить конечную скорость, которая послужит для второго этапа начальной скоростью:

Подставляем выраженные величины в формулу:

Перемещение в n-ную секунду прямолинейного равноускоренного движения

Иногда в механике встречаются задачи, когда нужно найти перемещение тела за определенный промежуток времени при условии, что тело начинало движение из состояния покоя. В таком случае перемещение определяется формулой:

За первую секунду тело переместится на расстояние, равное:

За вторую секунду тело переместится на расстояние, равное разности перемещения за 2 секунды и перемещения за 1 секунду:

За третью секунду тело переместится на расстояние, равное разности перемещения за 3 секунды и перемещения за 2 секунды:

Видно, что за каждую секунду тело проходит перемещение, кратное целому нечетному числу:

Из формул перемещений за 1, 2 и 3 секунду можно выявить закономерность: перемещение за n-ную секунду равно половине произведения модуля ускорения на (2n–1), где n — секунда, за которую мы ищем перемещение тела. Математически это записывается так:

Формула перемещения за n-ную секунду

Пример №4. Автомобиль разгоняется с ускорением 3 м/с 2. Найти его перемещение за 6 секунду.

Подставляем известные данные в формулу и получаем:

Таким же способом можно найти перемещение не за 1 секунду, а за некоторый промежуток времени: за 2, 3, 4 секунды и т. д. В этом случае используется формула:

где t — время одного промежутка, а n — порядковый номер этого промежутка.

Время от 4 до 6 секунд включительно — это 3 секунды: 4-ая, 5-ая и 6-ая. Значит, промежуток времени составляет 3 секунды. До наступления этого промежутка успело пройти еще 3 секунды. Значит, время от 4 до 6 секунд — это второй по счету временной промежуток.

Подставляем известные данные в формулу:

Проекция и график перемещения

Проекция перемещения на ось ОХ. График перемещения — это график зависимости перемещения от времени. Графиком перемещения при равноускоренном движении является ветка параболы. График перемещения при равноускоренном движении, когда вектор скорости направлен в сторону оси ОХ ( v ↑↑OX), а вектора скорости и ускорения сонаправлены ( v ↑↑ a ), принимает следующий вид:

Читайте также:  Аккумулятор для автомобиля падение напряжения

График перемещения при равнозамедленном движении, когда вектор скорости направлен в сторону оси ОХ (v↑↑OX), а вектора скорости и ускорения противоположно ( v ↓↑ a ), принимает следующий вид:

Определение направления знака проекции ускорения по графику его перемещения:

Пример №6. Определить ускорение тела по графику его перемещения.

Перемещение тела в момент времени t=0 с соответствует нулю. Значит, ускорение можно выразить из формулы перемещения без начального ускорения. Получим:

Теперь возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 с. Этой точке соответствует перемещение 30 м. Подставляем известные данные в формулу и получаем:

График пути

График пути от времени в случае равноускоренного движения совпадает с графиком проекции перемещения, так как s = l.

В случае с равнозамедленным движением график пути представляет собой линию, поделенную на 2 части:

Такой вид графика (возрастающий) объясняется тем, что путь не может уменьшаться — он либо не меняется (в состоянии покоя), либо растет независимо от того, в каком направлении, с какой скоростью и с каким ускорением движется тело.

Пример №7. По графику пути от времени, соответствующему равноускоренному прямолинейному движению, определить ускорение тела.

При равноускоренном прямолинейном движении графиком пути является ветвь параболы. Поэтому наш график — красный. График пути при равноускоренном прямолинейном движении также совпадает с графиком проекции его ускорения. Поэтому для вычисления ускорения мы можем использовать эту формулу:

Для расчета возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 c. Ей соответствует путь, равный 5 м. Значит, перемещение тоже равно 5 м. Подставляем известные данные в формулу:

Тело массой 200 г движется вдоль оси Ох, при этом его координата изменяется во времени в соответствии с формулой х(t) = 10 + 5t – «>– 3t 2 (все величины выражены в СИ).

Установите соответствие между физическими величинами и формулами, выражающими их зависимости от времени в условиях данной задачи.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Алгоритм решения

Решение

Из условия задачи известна только масса тела: m = 200 г = 0,2 кг.

Так как тело движется вдоль оси Ox, уравнение движения тела при прямолинейном равноускоренном движении имеет вид:

Теперь мы можем выделить кинематические характеристики движения тела:

Перемещение тела определяется формулой:

Начальная координата не учитывается, так как это расстояние было уже пройдено до начала отсчета времени. Поэтому перемещение равно:

Кинетическая энергия тела определяется формулой:

Скорость при прямолинейном равноускоренном движении равна:

v = v 0 + a t = 5 − 6 t

Поэтому кинетическая энергия тела равна:

Следовательно, правильная последовательность цифр в ответе будет: 34.

pазбирался: Алиса Никитина | обсудить разбор | оценить

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.

Алгоритм решения

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

pазбирался: Алиса Никитина | обсудить разбор | оценить

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

Решение

Весь график можно поделить на 3 участка:

По условию задачи нужно найти путь, пройденный автомобилем в интервале времени от t1 = 20 c до t2 = 50 с. Этому времени соответствуют два участка:

Записываем формулу искомой величины:

s1 — путь тела, пройденный на первом участке, s2 — путь тела, пройденный на втором участке.

s1 и s2 можно выразить через формулы пути для равномерного и равноускоренного движения соответственно:

Теперь рассчитаем пути s1 и s2, а затем сложим их:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Ответы на популярные вопросы
Adblock
detector