Двигатель для однофазной сети

Содержание
  1. Подключение трехфазного двигателя к однофазной сети
  2. Начала и концы обмоток (различные варианты)
  3. Схемы подключения трехфазного двигателя в однофазную сеть
  4. Однофазный двигатель с конденсатором – советы электрика
  5. Однофазные электродвигатели 220в: особенности подключения
  6. Общие понятия
  7. Применение однофазных моторов
  8. Устройство электродвигателя
  9. Пусковая катушка
  10. Двух и трёхфазные моторы
  11. Принцип действия
  12. Запуск мотора
  13. Тепловое реле
  14. Достоинства
  15. Недостатки
  16. Подключение двигателя
  17. Разновидности подключения
  18. Вычисление принадлежности проводов
  19. Подборка ёмкости конденсатора
  20. Проверка работоспособности
  21. Схема подключения однофазного двигателя с пусковой обмоткой
  22. Как определить рабочую и пусковую обмотки у однофазного двигателя
  23. Трехфазный асинхронный двигатель – подключение на 220 вольт
  24. Выбираем конденсаторы
  25. Тип конденсаторов
  26. Полезные советы
  27. Установка реверса
  28. Заключение по теме
  29. Как подключить однофазный электродвигатель через конденсатор – особенности разных схем
  30. Почему применяют запуск однофазного двигателя через конденсатор?
  31. Варианты схем включения — какой метод выбрать?
  32. Подключение конденсаторов для запуска однофазных электродвигателей
  33. Подробное о том, как подключить однофазный двигатель через конденсатор
  34. Подключение однофазного двигателя
  35. Как подключить однофазный электродвигатель
  36. Варианты подключения
  37. Подключение конденсатора
  38. Подключение трёхфазного двигателя к однофазной сети
  39. Схема включения двигателя в однофазную сеть
  40. Расчёт элементов схемы включения двигателя

Подключение трехфазного двигателя к однофазной сети

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме “звезда” (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или “треугольник” (концы одной обмотки соединены с началом другой).

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как “треугольником” (на 220В), так и “звездой” (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему “треугольник”, поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении “звездой”.

Табличка Б информирует, что обмотки двигателя подсоединены по схеме “звезда”, и в распределительной коробке не предусмотрена возможность переключить их на “треугольник” (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме “звезда”, или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме “треугольник”.

Начала и концы обмоток (различные варианты)

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме “треугольник”. В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены “звездой”, и имеется возможность изменить ее на “треугольник”, то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на “треугольник”, использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

Первая задача решается “прозваниванием” всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме “треугольник”, подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме “звезда”, смирившись со значительной потерей мощности.

Схемы подключения трехфазного двигателя в однофазную сеть

Обеспечение пуска. Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.

Реверс. Направление вращения двигателя зависит от того, к какому контакту (“фазе”) подсоединена третья фазная обмотка.

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Подключение по схеме “звезда”. Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Конденсаторы. Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения “звездой” емкость рассчитывается по формуле:

Для соединения “треугольником”:

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

Читайте также:  Надежность двигателей тойота авенсис

Источник

Однофазный двигатель с конденсатором – советы электрика

Однофазные электродвигатели 220в: особенности подключения

В наше время трудно найти человека, который бы не знал что такое однофазный электродвигатель. Однофазные электродвигатели 220 в выпускаются серийно уже довольно много лет. Они востребованы в сельском хозяйстве, быту человека, на производстве, в частных и государственных мастерских. Однофазные двигатели 220 В пользуются высокой популярностью.

Общие понятия

Асинхронный двигатель 220 вольт, однофазный, требует питания переменным электрическим током, сеть для подключения такого агрегата должна быть однофазной. Однофазные двигатели 220 в работают при напряжении в сети 220 вольт, частоте 50 герц.

Эти электрические величины поддерживаются во всех бытовых электрических сетях, в домах, квартирах, дачах, коттеджах, по всей территории России, а в США напряжение в бытовой электрической сети составляет 110 вольт.

На производстве же в нашей стране сетевое напряжение имеется однофазное, трёхфазное, и другие виды электрических сетей.

Применение однофазных моторов

Такой тип моторов применяют для работы устройств с малой мощностью.

Заводы производят электродвигатели однофазные 220 В малой мощности различных моделей, с разным числом оборотов и мощностью. Стоит отметить, что однофазные моторы уступают трёхфазным в нескольких параметрах.

Эти параметры меньше при условии, когда трёхфазные моторы имеют такой же размер.

Устройство электродвигателя

Однофазные двигатели 220 В имеют две фазы, но основная работа выполняется одной, и такие моторы стали называть однофазными. В состав мотора входят следующие детали.

Однофазный электромотор можно охарактеризовать как асинхронный электрический мотор, в котором имеется рабочая обмотка на его неподвижной части, она подключается к сети переменного однофазного тока.

Пусковая катушка

Для того чтобы однофазный мотор мог самостоятельно запускаться и начинать вращение, на них устанавливается ещё одна катушка. Она разработана для запуска двигателя.

Пусковая катушка устанавливается по отношению к рабочей со смещением на 90 градусов. Для того чтобы получить сдвиг токов, следует установить в цепь звено, которое будет сдвигать фазы.

В качестве фазосдвигающего звена могут выступать несколько средств.

Ротор и статор мотора металлические. Для того чтобы изготовить ротор или статор, нужна специальная электротехническая сталь марки 2212.

Двух и трёхфазные моторы

Существует возможность 2 или 3-фазный мотор подключить к однофазному источнику питания. Иногда по ошибке такие моторы называют однофазными. Это заблуждение, правильно будет называть это «двух (или трёх) фазный электромотор, подключённый в однофазную сеть питания переменного тока». Просто подключить двух или трёхфазный мотор в однофазную сеть не получится. Нужна схема согласования.

Таких схем есть несколько, согласование можно реализовать при помощи конденсаторов. После подключения к мотору конденсаторов согласно схеме, мотор будет работать, причём все фазы мотора будут работать, они всё время будут находиться под напряжением и выполнять работу по вращению ротора.

Принцип действия

Переменный электроток создаёт магнитное поле в статоре, которое имеет два поля, они одинаковы по амплитуде, частоте, но разнонаправленны.

Эти поля воздействуют на неподвижный ротор, и, вследствие того, что поля разнонаправленны, ротор начинает вращение. При отсутствии в моторе пускового механизма, то ротор будет стоять на месте.

Ротор, начав вращение в одну сторону, будет вращаться далее в этом же направлении.

Запуск мотора

Посредством магнитного поля производится запуск мотора, магнитное поле, воздействуя на ротор, принуждает его вращаться. Создают магнитное поле главная и дополнительная катушки, пусковая имеет меньший размер, подключается она к дополнительной через конденсатор, катушку индуктивности или активный резистор.

Если мотор низкой мощности, пусковая фаза замкнута. Чтобы запустить такой двигатель, подключать электричество к пусковой катушке можно лишь временно, не более чем на три секунды. Для этого существует пусковая кнопка. Кнопка вставлена в пусковое устройство.

Когда происходит нажатие пусковой кнопки, происходит подача электроэнергии на рабочую и на пусковую катушку одновременно, двигатель в эти первые секунды запуска работает как двухфазный, но через три секунды ротор уже набрал обороты, мотор запустился, и кнопка отпускается. Прекращается подача электроэнергии на пусковую катушку, но подача электричества на рабочую обмотку не прекращается, так устроено пусковое устройство, затем устройство работает уже как однофазное.

Важно помнить, что не следует долго держать пусковую кнопку, так как пусковая катушка может перегреться и выйти со строя, она рассчитана на работу несколько секунд. Для обеспечения безопасности в корпусе однофазного силового агрегата может быть встроено тепловое реле, центробежный выключатель.

Центробежный выключатель устроен таким образом, что когда ротор набрал обороты, центробежный выключатель выключается сам, без вмешательства человека. Пусковой ток однофазного двигателя выше рабочего, после запуска ток снижается до уровня рабочего.

Схему подключения однофазного двигателя смотрите здесь.

Тепловое реле

Тепловое реле действует следующим образом: при нагревании обмоток до установленного на реле предела, реле производит прекращение подачи электроэнергии на обе фазы, таким образом, исключается выход из строя при перегрузке или другой причине, это не даст возникнуть пожару.

Достоинства

К положительным качествам такого мотора можно отнести простоту его устройства, ротор в этой конструкции короткозамкнутый, обмотка статора не представляет собой большой сложности.

Недостатки

Кроме достоинств, в этом моторе имеются и некоторые недостатки.

По этой причине такой двигатель сам не может начать вращение. Дело в том что для того, чтобы мотор начал вращение, он должен иметь не менее двух обмоток, а следовательно, и двух фаз, но мотор имеет одну фазу изначально, таково его устройство. Кроме наличия двух фаз, требуется чтобы одна обмотка была смещена по отношению к другой на определённый угол.

Подключение двигателя

Подключать двигатель нужно в однофазную сеть переменного напряжения 220 вольт, частотой 50 герц. Эти номиналы электроэнергии имеются во всех жилых помещениях нашей страны, и вследствие этого однофазные моторы имеют огромную популярность. Они установлены во всей бытовой технике, такой как.

Разновидности подключения

Электродвигатели однофазные 220 В малой мощности с пусковой катушкой имеют включённый в цепь конденсатор во время старта. После разгона ротора катушка отключается. Если мотор сделан с рабочим конденсатором, цепь пуска не размыкается, идёт постоянная работа пусковой обмотки через конденсатор.

Существует возможность использовать один электромотор для разных целей. Один и тот же мотор можно снять с одной техники и установить на другую. Включать однофазный двигатель можно тремя схемами.

При использовании в цепи пуска резистора, обмотка будет иметь активное сопротивление выше. Произойдёт сдвиг фаз, достаточный для начала вращения. Можно использовать пусковую обмотку, в которой большее сопротивление и меньшая индуктивность. Чтобы обмотка соответствовала своим параметрам, она должна иметь меньше витков, тоньше провод.

Конденсаторный пуск представляет собой подключение конденсатора к пусковой обмотке и временную подачу электроэнергии.

Чтобы достичь максимального значения момента пуска, нужно круговое магнитное поле, оно должно выполнить вращение. Для этого нужно расположение обмоток под углом 90 градусов. Такого сдвига резистором добиться невозможно.

Если ёмкость конденсатора рассчитать правильно, то удастся сдвинуть обмотки под угол 90 градусов.

Вычисление принадлежности проводов

Чтобы вычислить провода, подключающие пусковую обмотку и рабочую, нужно иметь прибор, измеряющий омы или тестер. Нужно замерять сопротивления обмоток.

Сопротивление рабочей обмотки должно быть меньше, чем пусковой. Например, если замеры показали у одной обмотки 12 Ом, а у другой 30 Ом, то первая из них рабочая, а вторая пусковая.

Рабочая обмотка будет иметь большее сечение чем пусковая.

Подборка ёмкости конденсатора

Чтобы подобрать ёмкость конденсатора, нужно знать, какой ток потребляет электромотор. Если он потребляет ток 1,4 ампера, то нужен конденсатор, ёмкость которого составляет 6 микрофарад.

Проверка работоспособности

Начать проверку следует с визуального осмотра.

Электродвигатели однофазные 220 в малой мощности выпускаются совершенно разных моделей и для разных целей, и, прежде чем купить изделие, нужно чётко понимать, какова нужна мощность, тип крепления, количество оборотов в минуту, и прочие характеристики.

Схема подключения однофазного двигателя с пусковой обмоткой

Как определить рабочую и пусковую обмотки у однофазного двигателя

Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

Читайте также:  Замена двигателя тойота селика

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в.

И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку.

Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов.

Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только.

В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя.

также осуществляется через конденсатор.

Трехфазный асинхронный двигатель – подключение на 220 вольт

Бытовых ситуаций много, особенно у тех, кто проживает в своем собственном частном доме. К примеру, необходимо установить в гараже точильный станок с асинхронным электродвигателем, который работает от трехфазной сети переменного тока.

А на участок проведена лишь однофазная сеть на 220 В. Что делать? В принципе, это не проблема, потому что любой трехфазный электрический движок можно подключить и к однофазной сети, главное знать, как это сделать.

Итак, наша задача в этой статье разобраться в позиции – асинхронный двигатель подключение на 220 вольт.

Существуют две классические схемы такого подключения, в которых присутствуют конденсаторы. То есть, сам электродвигатель становится не асинхронным, а конденсаторным. Вот эти схемы:

Конечно, это не единственные варианты, но в этой статье будем говорить именно о них, как о самых простых и часто используемых.

На схемах хорошо видно, что в них установлены конденсаторы: рабочий и пусковой, которые в свою очередь называются фазосдвигающими. А так как в данной схеме эти элементы являются основными, то самый важный момент – это правильно подобрать конденсатор по емкости, которая бы соответствовала мощности мотора.

Выбираем конденсаторы

Существует формула, по которой емкость можно рассчитать. Правда, для схемы звезда и треугольника она отличается коэффициентом. Для схемы звезда формула вот такая:

С=2800*I/U, где I – это ток, который можно замерить в питающем проводе клещами, U – это напряжение однофазной сети – 220 В.

Формула для треугольника:

Здесь загвоздка может быть только в определение силы тока, просто клещей может не оказаться под рукой, поэтому предлагаем упрощенный вариант формулы:

С=66*Р, где Р – это мощность электродвигателя, которая наносится на шильдик мотора или в его паспорте. По сути, получается так, что емкость рабочего конденсатора в размере 7 мкФ должно хватить на 0,1 кВт мощности двигателя.

Обычно электрики берут именно это соотношение, когда перед ними ставиться вопрос, как подключить асинхронный двигатель с 380 на 220 В. И еще один момент – конденсатор контролирует силу тока, поэтому так важно правильно подобрать его емкость.

И самое главное в подключении двигателя добиться того, чтобы значение тока при эксплуатации электродвигателя не поднималось выше номинальной величины.

Что касается пускового конденсатора, то его обязательно устанавливают в схему, если при пуске мотора действует хотя бы минимальная нагрузка. Включается он обычно буквально на пару секунд, пока ротор не наберет свои обороты. После чего он просто отключается. Если по каким-то причинам пусковой конденсатор не отключится, то произойдет перекос фаз, и двигатель перегреется.

Есть еще один показатель, на который необходимо обратить внимание при выборе. Это напряжение. Правило здесь одно: напряжение конденсатора должно быть больше напряжения в однофазной сети на 1,5.

Тип конденсаторов

Специалисты рекомендуют в качестве пускового и рабочего конденсаторов использовать одинаковые модели. Самый простой вариант – это бумажные конструкции в герметичном металлическом корпусе.

Правда, есть у них один существенный недостаток – большие габаритные размеры.

Поэтому если перед вами стоит вопрос, как подключить небольшой мощности двигатель 380 на 220 вольт, то количество таких конденсаторов будет приличным, и вся конструкция будет смотреться не очень.

Можно использовать для этих целей электролитические приборы, но их схема подключения отличается от предыдущей, потому что в нее придется установить резисторы и диоды. К тому же эти конденсаторы при пробое взрываются. Есть более современные виды – это полипропиленовые модели металлизированного типа. Себя они зарекомендовали хорошо, претензий к ним сейчас у специалистов нет.

Полезные советы

Установка реверса

Иногда возникает необходимость провести подключение так, чтобы трехфазный двигатель, подсоединенный к однофазной сети, вращался то в одну, то в другую стороны. Для этого необходимо установить в схему любой управляющий прибор. Это может быть тумблер, кнопка или ключи управление. Но здесь есть два основных требования:

Вот схема, по которой подключается этот элемент в питание электродвигателя:

Здесь видно, что реверс осуществляется подачей электроэнергии на разные полюса конденсаторов.

Заключение по теме

Схема трехфазного асинхронного двигателя с подключением к 220 вольт – дело реальное. Проблем с ним быть не должно. Здесь главное, и это было показано в статье, правильно подобрать конденсаторы (рабочие и пусковые) и правильно выбрать схему подключения. Особое внимание придется уделить правилам соединения, где в основе будет лежать сам двигатель, а, точнее, его возможности.

Как подключить однофазный электродвигатель через конденсатор – особенности разных схем

Главная » Электрооборудование » Электродвигатели » Однофазные » Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения

Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения

В технике нередко используются двигатели асинхронного типа. Такие агрегаты отличаются простотой, хорошими характеристиками, малым уровнем шума, легкостью эксплуатации. Для того, чтобы асинхронный двигатель вращался, необходимо наличие вращающегося магнитного поля.

Такое поле легко создается при наличии трехфазной сети. В этом случае в статоре двигателя достаточно расположить три обмотки, размещенные под углом 120 градусов друг от друга и подключить к ним соответствующее напряжение. И круговое вращающееся поле начнет вращать статор.

Однако бытовые приборы обычно используются в домах, в которых чаще всего имеется только однофазная электрическая сеть. В этом случае обычно применяются однофазные двигатели асинхронного типа.

Почему применяют запуск однофазного двигателя через конденсатор?

Если на статоре двигателя поместить одну обмотку, то при протекании переменного синусоидального тока в ней образуется пульсирующее магнитное поле. Но это поле не сможет заставить ротор вращаться. Чтобы запустить двигатель надо:

В этом случае в двигателе возникнет круговое магнитное поле, а в короткозамкнутом роторе возникнут токи.

Варианты схем включения — какой метод выбрать?

Поскольку пуск однофазного двигателя с конденсатором происходит довольно быстро, то дополнительная обмотка работает небольшое время.

Это позволяет для экономии выполнять ее из провода с меньшим сечением, нежели основная обмотка. Для предупреждения перегрева дополнительной обмотки в схему часто добавляют центробежный выключатель или термореле.

Эти устройства отключают её при наборе двигателем определенной скорости или при сильном нагреве.

Схема с пусковым конденсатором имеет хорошие пусковые характеристики двигателя. Но рабочие характеристики при таком включении ухудшаются.

Это связано с принципом работы асинхронного двигателя. когда вращающееся поле является не круговым, а эллиптическим. В результате этого искажения поля возрастают потери и падает КПД.

Есть несколько вариантов подключения асинхронных двигателей под рабочее напряжение. Соединение звездой и треугольником (а также комбинированный способ) имеют свои преимущества и недостатки. Выбранный метод включения влияет на пусковые характеристики агрегата и его рабочую мощность.

Принцип действия магнитного пускателя основан на возникновении магнитного поля при прохождении электричества через втягивающую катушку. Подробнее об управлении двигателем с реверсированием и без читайте в отдельной статье.

В этой схеме конденсатор после запуска двигателя не отключается. Правильным подбором конденсатора для однофазного двигателя можно компенсировать искажение поля и повысить КПД агрегата. Но для такой схемы ухудшаются пусковые характеристики.

Необходимо также учитывать, что выбор величины емкости конденсатора для однофазного двигателя производится под определенный ток нагрузки.

При изменении тока относительно расчетного значения поле будет переходить от круговой к эллиптической форме и характеристики агрегата ухудшатся.

В принципе, для обеспечения хороших характеристик необходимо при изменении нагрузки двигателя менять величину емкости конденсатора. Но это может слишком усложнить схему включения.

Компромиссным решением является выбор схемы с пусковым и рабочим конденсаторами. Для такой схемы рабочие и пусковые характеристики будут средними по сравнению с рассмотренными ранее схемами.

В общем, если при подключении однофазного двигателя через конденсатор требуется большой пусковой момент, то выбирается схема с пусковым элементом, а при отсутствии такой необходимости – с рабочим.

Подключение конденсаторов для запуска однофазных электродвигателей

Перед подключением к двигателю можно проверить конденсатор мультиметром на работоспособность.

Читайте также:  Двигатель троит последствия езды

При выборе схемы у пользователя всегда есть возможность выбрать именно ту схему, которая ему подходит. Обычно все выводы обмоток и выводы конденсаторов выведены в клеммную коробку двигателя.

При необходимости модернизировать схему или самостоятельно сделать расчет конденсатора для однофазного двигателя можно, исходя из того, что на каждый киловатт мощности агрегата требуется емкость в 0,7 — 0,8 мкФ для рабочего типа и в два с половиной раза большая емкость для пускового.

При выборе конденсатора необходимо учитывать, что пусковой должен иметь рабочее напряжение не меньше 400 В.

Это связано с тем, что при пуске и остановке двигателя в электрической цепи из-за наличия ЭДС самоиндукции возникает всплеск напряжения, достигающий 300-600 В.

Подробное о том, как подключить однофазный двигатель через конденсатор

Подключение однофазного двигателя

Прежде чем приступить к подключению любого электродвигателя, необходимо быть полностью уверенным, что двигатель рабочий. Провести полную ревизию для проверки качества подшипников, отсутствия люфтов на посадочных местах ротора и в крышках двигателя. Провести проверку обмоток на замыкание между собой и на корпус.

Так-же при подключении необходимо соблюдать технику безопасности, быть предельно внимательным и работать без спешки.

Для подключения однофазного электродвигателя с пусковой обмоткой нам понадобится включатель с пусковым контактом – ПНВС. Число после букв означает силу тока на которую рассчитан данный выключатель.

В предыдущей статье я рассказал как определить тип двигателя, трёхфазный он или однофазный.

И если вы сомневаетесь в том, конденсаторный это двигатель или с пусковой обмоткой, то вам необходимо сначала подключить двигатель как с пусковой обмоткой и если он не запустится значит он конденсаторный.

Для того, чтобы узнать какая из двух обмоток является рабочей, необходимо измерить их сопротивление. Та катушка, которая будет иметь меньшее сопротивление является рабочей. Исключение составляет очень небольшой процент конденсаторных двигателей, у которых и рабочая обмотка и конденсаторная одинаковы и имеют одно сопротивление.

Пусковая обмотка подключается только для запуска двигателя и после того как двигатель набрал обороты – отключается. В работе остаётся только рабочая обмотка. Правильно намотанный двигатель, с проведённой ревизией без нагрузки на валу выходит на положенные обороты не больше чем за несколько секунд, но чаще – мгновенно. Поэтому при пробном пуске двигатель должен быть надёжно закреплён.

Чтобы запустить двигатель с пусковой обмоткой необходимо подключить его по такой схеме:

Один конец рабочей и пусковой соединяем вместе и подключаем к одной из крайних клейм кнопки. Это будет общий провод. Второй конец рабочей обмотки подключаем ко второй крайней клейме кнопки. А оставшийся провод пусковой катушки соединяем со средней клеймой кнопки.

При этом мы задействуем клеймы только с одной стороны кнопки. Три клеймы с другой стороны пока остаются свободными. К двум крайним из них подключаем сетевой шнур. А к центральной клейме подводим перемычку от той крайней клеймы, напротив которой подсоединён один рабочий провод.

Закрываем крышку кнопки, закрепляем двигатель, делаем пробное включение-выключение кнопки чтобы убедится в её работоспособности и знать что она находится в выключенном состоянии. Включаем вилку в розетку, нажимаем кнопку пуск и удерживаем до набора двигателем оборотов.

Но не более нескольких секунд. Затем кнопку отпускаем. Если двигатель гудит, но вращаться не начинает, значит двигатель конденсаторный и подключать его нужно по другой схеме.

Для подключения конденсаторного двигателя пусковая кнопка не нужна.

Поэтому подойдёт любой подходящий по мощности пускатель, тумблер или выключатель который может смыкать и размыкать одновременно два контакта.

Соединяем один конец рабочей и один конец пусковой обмоток вместе и подводим к одной из клейм выключателя. Вторые концы обмоток подключаем к разным выводам конденсатора и при этом провод от рабочей катушки подводим ещё и к второй клейме выключателя. На противоположенные клеймы выключателя подключаем сетевой шнур.

Переключаем тумблер в положение выключено, проверяем надёжность закрепления двигателя, включаем вилку в розетку и включаем тумблер. Двигатель без нагрузки на валу должен запуститься мгновенно.

Для того, чтобы однофазный двигатель вращался в другую сторону, необходимо поменять выводы одной из обмоток местами.

Если нам необходимо чтобы двигатель вращался и в одну и в другую стороны, то необходимо поставить тумблер реверса. Причём поставить его так, чтоб мы не могли переключить его во время работы двигателя. Это касается конденсаторного двигателя. Тумблер должен быть на 2 или 3 положения и иметь шесть выводов.

В одном положении два средних вывода замыкаются с двумя крайними, а в другом с двумя другими крайними. Подключаем два провода одной из катушек двигателя к центральным клеймам переключателя, а крайнии клеймы соединяем по диагонали и отводим от них два провода которые подключаем туда, откуда отключили концы обмотки. Теперь при переключении тумблера двигатель будет запускаться в другую сторону.
Схема реверса однофазного двигателя с пусковой обмоткой и кнопкой ПНВ.

О том как подобрать конденсатор к конденсаторному двигателю я расскажу в одной из следующих статей.

Как подключить однофазный электродвигатель

Электричество сегодня является основным источником, обеспечивающим работу большого количества механизмов. Для выполнения таких процессов применяют несколько видов двигателей.

Они могут быть, как одно-, так и трехфазными и отличаться принципом подключения. Более подробно узнать о подобных конструкциях можно на сайте http://ovk.dp.ua/odnofaznyye-elektrodvigateli/.

Варианты подключения

Пуск однофазных асинхронных двигателей зачастую осуществляется с помощью конденсатора. Для таких целей можно использовать несколько основных вариантов, которые отличаются способом подключения ранее указанного элемента:

Подключение конденсатора

Следует понимать, что такой способ подключения не является единственным. Существуют и другие варианты, зависящие в основном от типа двигателя.

Но если все же вы выбрали схемы с конденсаторами, тогда вам следует выполнить несколько простых рекомендаций:

Не следует выполнять подобные операции, если вы не разобрались с работой двигателя. Это может привести к выходу его из строя (перегорание обмотки и т.д.). Альтернативным вариантом подключения является доверие подобных работ опытному электрику, который сделает все качественно и надежно.

Подключение трёхфазного двигателя к однофазной сети

Автор: admin, 31 Мар 2013

В этой статье рассмотрим подключение трёхфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего конденсатора, а также расчёт ёмкости пускового и рабочего конденсаторов, подключение трёхфазного двигателя «звездой» и «треугольником».

Самый простой пуск трёхфазного двигателя в однофазной цепи возможен с помощью фазосдвигающего конденсатора, включённого в третью обмотку двигателя. КПД(коэффициент полезного действия) двигателя в этом случае будет около 60% (по сравнению с трёхфазным включением).

При пуске маломощного асинхронного электродвигателя ( до 500 Вт), или при пуске двигателя без нагрузки на его вал, можно ограничится использованием только, так называемого, рабочего конденсатора.

При пуске более мощных двигателей нужно использовать ещё и пусковой конденсатор, необходимый для разгона двигателя.

Схема включения двигателя в однофазную сеть

Подключение трёхфазного двигателя

В схеме обозначено:

После включения выключателя S1 необходимо сразу нажать кнопку S3, после разгона двигателя (2-3 сек) кнопку отпустить.

Расчёт элементов схемы включения двигателя

Ёмкость рабочего конденсатора для данной схемы (соединение обмоток электродвигателя «треугольником») рассчитывается по следующей формуле:

Ср = 4800*I/U, где

Ср — ёмкость рабочего конденсатора в мкФ;
I — ток электродвигателя, А;
U — сетевое напряжение(220 В).

При соединении обмоток электродвигателя «звездой» ёмкость рабочего конденсатора определяется по формуле:

Если неизвестен ток электродвигателя, но известна мощность, то ток можно рассчитать по формуле:

P — мощность электродвигателя, Вт;
ɳ — КПД электродвигателя;
cosφ — коэффициент мощности.

Приблизительно можно принять ɳ=0,6, cosφ = 0,8. Тогда формула упростится и примет вид:

I = P/(0,83*U).

Ёмкость пускового конденсатора должна быть в 2-3 раза больше ёмкости рабочего.

Нужную ёмкость конденсатора можно собрать из нескольких, имеющихся в наличии конденсаторов, как это сделать описано здесь. Лучше всего применять металлобумажные или плёночные конденсаторы. Рабочее напряжение конденсаторов не ниже 300В.

В некоторых статьях предлагают использовать электролитические конденсаторы, соединив пару конденсаторов минусовыми выводами и зашунтировав их диодами.

Я не рекомендую этого делать, так как при выходе из строя диода (при его электрическом пробое), через электролитический конденсатор потечёт переменный ток и он скорее всего взорвётся из-за нагрева.

Разрядный резистор R1 служит для разряда пускового конденсатора после его отключения. Можно обойтись и без него, но тогда следует помнить, что на устройстве может остаться опасное напряжение, даже после его выключения. Можно взять резистор сопротивлением 0,5 — 1 мОм, на мощность рассеяния не ниже 0,5 Вт.

Все выключатели и предохранители должны выдерживать рабочий ток электродвигателя.

Советы: лучше всего использовать соединение «треугольником», при соединении обмоток «звездой» значительная часть мощности двигателя теряется.

На шильдике двигателя указывается схема соединения обмоток, возможность её изменения и рабочее напряжение обмоток. Например: ∆/Ү 220/380 обозначает, что обмотки электродвигателя могут быть подсоединены либо «треугольником» на 220 В, либо «звездой» на напряжение 380В.

Обозначение Ү 380 — говорит о том, что обмотки подсоединены по схеме «звезда» и рассчитаны на 380 В и в распредкоробку двигателя выведено всего три провода. Тут придётся подключать по схеме «звезда», потеряв мощность.

Можно конечно залезть внутрь двигателя и вывести недостающие концы в распредкоробку, но это работа уже для специалиста.

Ёмкость рабочего конденсатора (в мкФ) можно приблизительно рассчитать умножив мощность двигателя (в кВт) на 100. Ёмкость пускового конденсатора можно уменьшить, подобрав экспериментальным путём.

Если вам помогла эта статья, то вы можете поделиться ей со своими друзьями, нажав кнопки социальных сетей, расположенные ниже.

Источник

Ответы на популярные вопросы