Двигатель для тепловоза фото

Тепловозные дизели

Дизель типа 5Д49 в составе дизель-генератора

Дизели 2-5Д49, 1А-5Д49, 3-5Д49Т2 представляют собой модификации дизеля 5Д49 и имеют одинаковую размерность (обозначение по ГОСТ 3493-74 16ЧН26/26), различаясь по цилиндровой мощности, удельному расходу топлива и масла, регулировке и ресурсу.

Продольный разрез дизеля типа 5Д49

Поперечный разрез дизеля типа 5Д49

Дизель 14Д40 в составе дизель-генератора

Дизель 14Д40 зарекомендовал себя надежным тепловозным двигателем, простым в обращении и обслуживании, с высоким моторесурсом. Дизель 14Д40 устанавливается на тепловозы серии М62.

Дизель изготавливается как в обычном, так и в тропическом исполнениях. Продольный разрез дизеля 14Д40

Поперечный разрез дизеля 14Д40

Дизели 2-6Д49, ЗА-6Д49 созданы специально для тяжелой тепловозной работы и обладают высокой экономичностью и компактностью.

Дизели имеют одинаковую размерность (обозначение по ГОСТ 3493-74 8ЧН26/26) различаясь по цилиндровой мощности и регулировке.

На тепловозах дизели этого типа работают как в составе дизель-генератора (тепловозы с электропередачей), так и с гидропередачей.

Продольный разрез дизеля типа 6Д49

Поперечный разрез дизеля типа 6Д49

Дизели ПД-1М, ПД-1МТ (обозначение по ГОСТ 3493-74 6ЧН31,8/33,0) проверены в течение ряда лет в эксплуатации на тепловозах серии ТЭМ2, широко применяемых на железных дорогах многих стран как на маневровых работах, так и на вывозной и магистральной службе, а также на тепловозах промышленного назначения (на подъездных путях металлургических заводов, на рудных карьерах, на лесных разработках и других промышленных объектах).

Дизель ПД-1М в составе дизель-генератора

Продольный разрез дизеля ПД-1М

Поперечный разрез дизеля ПД-1М

Дизель 211 Д-2 предназначен специально для установки на маневровые тепловозы (ТГМ4, ТГМ4А и др.) и работает с гидропередачей.

Отработанность конструкции и технология обеспечивают бесперебойную эксплуатацию в течение гарантийного срока и после переборки.

Дизель 211 Д-2 кроме обычного имеет и тропическое исполнение.

Дизель 1Д12-400. Дизели типа 1Д12 нашли широкое применение в различных отраслях хозяйства в том числе и на железнодорожном транспорте. Благодаря высокой степени унификации узлов и деталей, отработанной конструкции все модификации дизелей этого типа обладают повышенными надежностью и моторесурсом.

Дизель У1Д6-250ТКСЗ. Дизели типа УД6 широко применяются в различных отраслях. Их устанавливают на маневровых тепловозах, автогрейдерах, дизель-генера-торных установках, дизель-электрических железнодорожных кранах, путеукладочных, шпалоподбивочных машинах, снегоочистителях и других машинах.

Недорогой, экономичный и компактный, надежный в эксплуатации и удобный в обслуживании дизель У1Д6-250ТКСЗ кроме обычного имеет также и тропическое исполнение.

Дизель ЯАЗ-М204А имеет проверенную конструкцию, отработанную технологию и хорошо зарекомендовал себя на транспорте.

Источник

Самый мощный локомотив в России

Опубликовано 26.07.2019 · Обновлено 04.02.2021

Сейчас мы рассмотрим серьезный вопрос: какой у нас локомотив самый мощный?

Скажу сразу, все современные тепловозы и электровозы обладают большой мощностью, достаточной для вождения тяжеловесных грузовых поездов и пассажирских поездов с большой скоростью, так сказать, «с ветерком» Но есть один тип локомотива, мощнее которого пока ничего не придумано. О нем я расскажу, чуть позже, сохраню интригу.

На Российских железных дорогах сейчас трудится большой спектр локомотивов все они современны и достаточно сильные. Пробежимся слегка по электровозам: ВЛ80С,Т; ВЛ85; 2ЭС5К; 3ЭС5К («Ермак») основные грузовые электровозы переменного тока, мощность в секции у каждого составляет порядка 4500 л.с., а все они многосекционные, вот и умножьте : две секции по 4500 л.с.- уже 9000 л.с., а три секции – вот и 13500 л.с., а если по системе многих единиц (два двухсекционных электровоза управляются с одного пульта) вот уже и 18000 л.с.! Неплохо, правда!

Практически такая-же картина и с электровозами постоянного тока: ВЛ10; ВЛ11;3ЭС4К; 2ЭС6 («Синара»), мощность их точно такая-же.

Пассажирские электровозы: ЭП1; ЭП1М; ЭП1П отечественные машины переменного тока имеют мощность порядка 4000 л.с., есть у нас еще электровоз двойного питания (работает на переменном и постоянном токе), это ЭП20, мощность его такая-же. Давно, еще со времен Советского союза работают, и очень здорово работают, на наших дорогах знаменитые «Чехи» — пассажирские электровозы переменного и постоянного тока, произведенные в ЧССР. Эти машины составляли и еще составляют, практически весь пассажирский парк электровозов на доброй половине всех железных дорог России! Это электровозы переменного тока: ЧС4Т; ЧС8 и постоянного тока: ЧС2; ЧС3; ЧС2Т; ЧС6; ЧС7 и ЧС200, мощность их одинакова с отечественными электровозами.

Тепловоз 2ТЭ25К

В настоящее время Брянским машиностроительным заводом выпускаются тепловозы 2ТЭ25К («Пересвет»), мощностью до 4000 л.с., в секции, а они выпускаются в двухсекционном и трехсекционном исполнении. Вот и представьте себе, уже, наверное, посчитали – 12000 л.с. Очень даже мощно! Пассажирские тепловозы ТЭП60; ТЭП70 и ТЭП70БС (имени Бориса Саламбекова) имеют мощность 4000 л.с., исполняются в односекционном варианте и развивают скорость до 160 км/час, есть чем гордиться!

Газотурбовоз ГТ1

Ну и наш лидер, творение Людиновского тепловозостроительного завода – газотурбовоз ГТ1, мощностью 11284 л.с. Газотурбовоз – это локомотив, силовая установка которого состоит из газовой турбины с соответствующей передачей, на данном локомотиве, передача – электрическая, переменно-постоянного тока. Это когда турбина вращает генератор переменного тока (он намного легче и проще генератора постоянного тока), затем снова ток трансформируется в постоянный, через выпрямительную установку, и уже постоянный ток работает в тяговых электродвигателях постоянного тока (они мощнее и система регулирования напряжения на них гораздо проще и дешевле, чем на асинхронных электродвигателях переменного тока).

Нельзя сказать, что газотурбовоз, машина нового, нет, они строились по всему миру и раньше, в СССР на Коломенском тепловозостроительном заводе было спроектировано и построено несколько типов газотурбовозов, в том числе и для пассажирского движения. Дело в том, что в эксплуатации данный локомотив очень сложен и прожорлив — газовая турбина все-таки! А мощность их сильно не опережала мощность эксплуатируемых тепловозов, поэтому в серию они не пошли, но работы по ним велись и ведутся по сей день, результат налицо – газотурбовоз ГТ1.

Газотурбовоз ГТ1

Источник

Тепловоз

Тепловоз — автономный локомотив, первичным двигателем которого является двигатель внутреннего сгорания, обычно дизель.

Дизель тепловоза преобразует энергию жидкого топлива в механическую работу вращения коленчатого вала, от которого вращение через передачу получают движущие колёса.

Дизель плохо приспособлен к переменным режимам работы, которые характерны для наземных транспортных машин. Его мощность прямо пропорциональна частоте вращения коленчатого вала (при неизменной подаче топлива), поэтому более выгодна его работа в постоянном режиме, при максимальной частоте вращения коленчатого вала. Для обеспечения возможности работы дизеля с постоянной частотой вращения вала и передачи от его вала энергии движущим колёсным парам служит специальное промежуточное устройство — тяговая передача тепловоза, которая «приспосабливает» дизель к условиям работы локомотива.

Читайте также:  Мерседес вито 639 двигатель

К основным узлам тепловоза относятся также экипажная часть, в которую входят кузов, главная рама с ударно-сцепными устройствами (автосцепка) и тележки с колёсными парами и упругим рессорным подвешиванием. Нормальную работу двигателя, передачи и экипажной части обеспечивает вспомогательное оборудование тепловоза; к оборудованию относятся топливная система дизеля, системы его охлаждения, смазки и подачи воздуха, а также системы охлаждения и вспомогательные устройства переда­чи, песочная система экипажной части, воздушная (тормозная) система, система пожаротушения и др. (рис. 1).

Содержание

Классификация

Тепловозы могут быть классифицированы по ряду признаков. По роду службы их можно разделить на пассажирские, грузовые, маневровые, промышленного транспорта, универсальные, предназначенные для выполнения различных работ (например, грузопассажирские, маневрово-вывозные).

Назначение тепловоза определяет его технические характеристики, конструктивное исполнение, выбор типа двигателя, передачи, экипажной части. На магистральных железных дорогах эксплуатируются тепловозы с электрической и гидравлической передачами; промышленные тепловозы малой мощности (в основном до 250 кВт) выполняют и с механической передачей.

По устройству ходовых частей различают тепловозы тележечного типа и с жёсткой рамой (бестележечные); в основном выпускаются тепловозы тележечного типа.

Тепловозы делятся также по ширине рельсовой колеи, на которой они эксплуатируются, — нормальной (широкой) колеи 1520 мм на отечественных железных дорогах и 1435 мм в большинстве зарубежных стран; узкой колеи (от 600 до 1000—1100 мм).

Выпускаются тепловозы одно-, двух- и многосекционные. Односекционные поездные тепловозы имеют для управления две кабины машиниста; двухсекционные — по одной кабине на секцию; многосекционные тепловозы в промежуточных секциях кабины ие имеют, так как управляются из кабин головных секций.

Историческая справка

Первые проекты тепловозов появились в России в начале XX века.

В 1905 году инженер Н. Г. Кузнецов и полковник А. И. Одинцов выступили в Русском техническом обществе с докладом о проекте тепловоза с электрической передачей (авторы называли локомотив автономным электровозом с калорическими двигателями). На локомотиве предлагалось установить на раме два двигателя (мощностью по 130 кВт) и соединить их непосредственно с генераторами переменного тока, который передавался бы четырём электродвигателям, помещённым на осях ведущих колёс. Предложенная схема локомотива была прообразом тепловоза с электрической передачей, получившей в последующем наибольшее распространение.

В 1906 профессор В. И. Гриневецкий изобрёл оригинальный 2-тактный нефтяной реверсивный двигатель, который мог работать без проме­жуточной передачи и предназначался для применения на судах и тепловых локомотивах.

В 1911 году к постройке двигателя приступили на Путиловском заводе в Петербурге, но из-за отсутствия средств и начавшейся Первой мировой войны сборку двигателя не закончили.

В 1916 году на основе сохранившихся материалов испытаний двигателя был создан проект поездного тепловоза, который выполнили Б. М. Ошурков, Е. Н. Тихомиров и А. Н. Шелест под руководством Гриневецкого.

Попытка создания тепловоза была предпринята за границей фирмой «А. Борзиг» совместно с фирмой «Братья Зульцер» (Швейцария), которая построила двигатель под руководством Р. Дизеля. На заводе в городе Винтертур по заказу прусских казённых железных дорог начали строить оригинальный локомотив.

Главный двигатель этого тепловоза мощностью до 880 кВт представлял собой 2-тактный 4-цилиндровый дизель, коленчатый вал которого дышлами был соединён с ведущи­ми колёсами. Тепловоз этой модели в 1914 году совершил несколько опытных поездок, после чего стала ясна его непригодность для железнодорожного транспорта, и он был продан на слом.

В 1912—1913 годах группой инженеров под руководством Гриневецкого был разрабо­тан проект тепловоза с газовой передачей (проект Шелеста). Силовая установка локомотива состояла из компрессора, двигателя внутреннего сгорания и расширительной машины (так называемый комбинированный двигатель); КПД тепловоза составлял по расчётам 30—36 % (рис. 2).

На тепловоз были получены патенты (русский патент № 28189 с приоритетом (1913 год) и англ.ийский патент 5381 с приоритетом (1914)год); из-за начавшейся войны проект не был воплощён в жизнь.

На Ташкентской дороге Ю. В. Ломоносов совместно с А. И. Липецем разработали проекты тепловозов непосредственного действия (1908—1910 годы) и с электрической передачей (1913 год).

Идея применения газовой передачи была осуществлена только в 1950-е годы, когда в Швеции построили тепловоз с механическим генератором газа мощностью порядка 950 кВт. Подобный проект тепловоза создан в России в 1916 году на Коломенском заводе Ф. X. Мейнеке.

Российская железнодорожная миссия за границей, учреждённая в июне 1920 году, в которую входили Ломоносов (руководитель), Шелест и Мейнеке, создала в 1921 году два эскизных проекта тепловоза — с электрической передачей и использованием газовой турбины (системы Шелеста).

В январе 1922 года Совет Труда и Обороны принял решение о развитии тепловозостроения, Госплану было поручено разрабо­тать условия и порядок передачи проектов тепловозов для детальной заводской проработки и постройки на отечественных и иностранных заводах.

Во исполнение постановления Российская железнодорожная миссия разместила заказы за границей на постройку тепловозов взамен заказа советского правительства на паровозы серии Э. Предполагалось построить три тепловоза: с электрической передачей; с гидравлической передачей, впоследствии заменённой механической; с механическим генератором га­за — газовой передачей. Заказ на тепловоз с газовой передачей был сделан английской фирме «Армстронг-Уитуорт»; тепловозы с электрической и механической передачами заказаны в Германии.

С 1921 года в Технологическом институте в Петрограде разрабатывался проект тепловоза с электрической передачей по предложе­нию Я. М. Гаккеля и параллельно с 1922 года в Теплотехническом институте работало Тепловозное бюро государственных объединённых машиностроительных заводов под руководством Л. Н. Щукина.

В строительстве тепловоза приняли участие Балтийский судостроительный завод, «Красный путиловец», «Электрик», «Электросила». Дизель и генератор были взяты с английской подводной лодки, тяговые электродвигатели, тележки, рама проектировались заново.

НКПС присвоил строящимся и проектируемым тепловозам серию Ю и дал обозначения: электрический — Ю э 001 (под руководством Ломоносова), Ю э 002 (под руководством Гаккеля), Ю ш 003 (под руководством Шелеста), Ю к 004 (компрессорный, системы Е. К. Мазинга, разработанный в Тепловозном бюро), Ю м 005 (магнитный) и другие. Не все из этих проектов были реализованы.

Первыми были построены тепловозы с электрической передачей. Тепловоз, заказанный в Германии по проекту, разработанному группой Ломоносова (рис. 3), получил наименование Э эл 2. Приёмку тепловозов, изготов­ленных в Германии, в России проводи­ла комиссия под председательством М. Е. Правосудовича.

В России был построен тепловоз по проекту Гаккеля (рис. 4), получивший при поступлении на магистральные пути наименование Щ эл 1, так как его мощность 1000 л. с. приблизительно равнялась мощности паровоза серии Щ. На систему управления тепловоза с электрической передачей в 1926 году Гаккелю выдано авторское свидетельство.

Читайте также:  21011 двигатель размеры поршней

В качестве главного дизеля в тепловозе Э эл 2 использован 6-цилиндровый 4-тактный двигатель с подводной лодки мощностью 880 кВт. Двигатель через полужёсткую муфту вращал генератор постоянного тока. Пять тяговых электродвигателей приводили в движение ведущие оси тепловоза через двухстороннюю зубчатую передачу. Полная масса тепловоза 118,3 т, максимальная скорость 50 км/ч, КПД 26 % (при КПД дизеля 33 %). Силовая установка тепловоза Щ эл 1, состоявшая из 4-тактного 10-ци­линдрового дизеля мощностью 735 кВт и двух генераторов, размещалась на раме. Напряжение от генераторов подавалось к тяговым двигателям. Полная масса тепловоза 180 т, максимальная скорость 70 км/ч.

Для изучения первых тепловозов и их сравнительной оценки с паровозом в 1925 году на станции Люб­лино под Москвой организована Опытная тепловозная база. Локомотивы обслуживали грузовые поезда от Москвы до Курска на расстоянии 535 км, где эксплуатировались также паровозы серии Э, что давало возможность сравнивать характеристики локомотивов. Экономически невыгодный тепловоз Щ эл 1 по результатам испытаний был снят с эксплуатации в 1927 году. Этот тепловоз со­хранён и установлен в 1974 году на вечную стоянку на станции Ховрино (Москва). Тепловоз Э эл 2 служил в депо Ашхабад до конца 1950-х годов, когда на железные дороги стали поступать новые серийные локомотивы.

В 1927 году на опытную базу прибыли тепловозы Э мх 3 с механической передачей (рис. 5), которые работали на железнодорожной сети до 1941 года. Создание тепловоза Э ш 1 (Ю ш 003) не было завершено в Великобритании из-за разрыва дипломатических отношений. Силовая установка была перевезена в Москву, где при Московском высшем техническом училище (МВТУ) была организована лаборатория, ставшая научным центром по изучению тепловозной тяги.

В 1930 году начала подготовка инженеров-тепловозников в Московском электромеханическом институте инженеров транспорта (МЭМИИТ). В 1933 году в МВТУ создана кафедра «Тепловозостроение». Существенный вклад в развитие теории и практики создания и совершенствования конструкции тепловоза внесли К. А. Шишкин, П. В. Якобсон, А. С. Раевский, Н. А. Добровольский, А. Е. Алексеев, С. С. Терпугов, А. И. Долинжев, В. Б. Медель, Б. С. Поздняков, А. А. Кирнарский, В. А. Малышев и другие.

Первый серийный тепловоз Э эл типа 2—5—1 (рис. 6) выпущен в 1932 году Коломенским паровозостроительным заводом (до 1938 года в эксплуатации находилось около 40 локомотивов). На тепловозе был установлен 6-цилиндровый 4-тактный дизель, который через упругую муфту вращал вал главного генератора. Ходовая часть тепловоза включала две передние оси, объединённые в тележку; пять других осей, приводившихся в движение тяговыми электродвигателями; заднюю поддерживающую ось, оформленную в самостоятельную тележку. Тепловоз имел мощность 840 кВт, полную массу 138 т; максимальная скорость 55 км/ч.

В 1947 году на Харьковском заводе транспортного машиностроения выпущен тепловоз, являвшийся копией американского тепловоза, поступив­шего в страну в конце Великой Отечественной войны по ленд-лизу. Тепловозу была присвоена серия ТЭ1 (рис. 7). Локомотив имел мощность 735 кВт, в конструкции была применена схема использования газа, разработанная в 1942 году Якобсоном и А. А. Пойда.

Первый газогенераторный тепловоз был испытан в 1950 году.

В начале 1950-х годов производство тепловозов организовано на ряде крупных предприятий машиностроения.

Тепловозы получили широкое распространение на железнодорожной сети США, Канады, стран Западной Европы. Разработка конструкций тепловоза в этих странах ведётся с конца 1920-х — начала 1930-х годов. Первый магистральный тепловоз построен в США в 1925 году. В середине 1940-х годов тепловозная тяга широко введена в США, в 1950-е годы — в Великобритании и Германии.

В первые годы тепловозами заменяли паровозы главным образом на маневровой работе. Позднее появилась тенденция к соз­данию универсальных мощных тепловозов. В странах Западной Европы тепловозная тяга конкурирует с электрической тягой.

Технико-экономические показатели

Тепловоз как тип локомотива обладает многими достоинствами по сравнению с другими типами локомотивов. Высокий КПД тепловоза (26—30 %) определяется КПД дизеля, который достигает 42 %. Преобразование химической энергии топлива в механическую работу в таком двигателе происходит в ограниченном замкнутом объёме внутри цилиндра (внутреннее сгорание, в отличие от открытого, как в топке паровоза), что и снижает потери, и обеспечивает более высокую эффективность локомотива. К достоинствам тепловоза относятся независимость от наличия воды (как у паровоза) и автономность, в отличие от электровоза, связанного с контактной сетью. Тепловозы могут эксплуатироваться практически в любых климатических условиях, с разнообразным рельефом местности, по всем железнодорожным линиям, как магистральным, так и промышленного транспорта. Эксплуатация тепловозов не требует сооружения дорогостоящих устройств электроснабжения (контактная сеть, тяговые подстанции и т. п.), поэтому строительство железной дороги с тепловозной тягой обходится дешевле, чем электрических дорог. Более выгодно использовать тепловозы и на маневровой и вывозной работе, хотя тепловозы могут совершать пробеги до 1000 км без пополнения запасов воды и топлива по магистральным железным дорогам.

Первой дорогой, на которой на ряде участков, проходящих по пустыне, в 1931 году введена тепловозная тяга (тепловозы серии Э эл ), стала Ашхабадская железная дорога (вошедшая позднее в состав Среднеазиатской железной дороги).

Характеристика тепловозов

Распространение получили тепловозы тележечного типа с электрической передачей.

Тепловоз с электрической передачей и двумя 3-осными тележками работает следующим образом: дизель вращает ротор электрического генератора переменного тока, преобразуемого в постоянный ток в силовой выпрямительной установке. Шесть тяговых электродвигателей через тяговые редукторы приводят во вращение колёсные пары. Реверс тепловоза осуществляется переклю­чением обмоток тягового электродвигателя. Пуск дизеля производится от стар­тёр-генератора, работающего в этот момент от аккумуляторной батареи. Для торможения служат тормозной компрессор и тяговые электродвигатели, которые могут работать в генераторном режиме, то есть осуществлять электрическое торможение.

Конструкцию тепловоза характеризует ряд факторов: стоимость изготовления, расход топлива, срок службы, производительность. Между стоимостью, мощностью и серийностью изготовления тепловоза существует определённая зависимость: чем мощнее тепловоз, тем он дороже; чем больше экземпляров в серии, тем изготовление становится дешевле.

Наиболее дорогой частью тепловоза является дизель, стоимость которого составляет примерно 30 % стоимости локомотива. Стоимость гидропереда­чи — около 12 %, а стоимость электропередачи — 20 %. Для уменьшения стоимости дизеля широко применяются так называемые мощностные ряды, в которые входят дизели, имеющие цилиндры одного размера и состоящие из унифицированных агрегатов, узлов и деталей. Например, тепловозные дизели Д49 с цилиндрами диаметром 26 см и ходом поршней 26 см могут составлять ряд с различным, чйслом цилиндров — 8, 12, 16 и 20, обеспечивая соответственно мощность 880, 1650, 2200, 3077 и 4415 кВт.

Читайте также:  Дизельный двигатель форд сиера

С увеличением массы состава поезда стоимость перевозки грузов уменьшается, но требуется большая мощность на тягу. Это обстоятельство привело к применению нескольких секций одной серии тепловозов для перевозки составов большей массы. Создание более мощных односекционных тепловозов вместо трёхсекционных меньшей мощности в секции обеспечивает существенную экономию капитальных затрат, стоимости содержания локомотива и расхода топлива.

Для организации пассажирских и грузовых перевозок требуются тепловозы различной мощности и силы тяги (рис. 8). Магистральные тепловозы с силой тяги при продолжительном режиме 2×200 кН имеют недостаточную мощность для реализации оптимальных скоростей движения. Для обеспечения перспективных потребностей в грузовых перевозках необходимы тепловозы мощностью 2940 и 4415 кВт в одной секции. Внедрение таких тепловозов позволит уменьшить эксплуатационные расходы на 10 % и поднять массу грузовых поездов до 6500 т.

Существенным резервом экономии топлива, расходуемого тепловозным парком, является переход с 2-тактных на 4-тактные дизели. Например, дизели 2Д100 и 10Д100 имеют удельный расход топлива 238 и 228 г/(кВт·ч). При замене их 4-тактными двигателями типа Д49 с удельным расходом топлива 208 г/(кВт·ч) достигается экономия топлива соответственно 14 и 10 %. Важным является также малый удельный расход топлива тепловоза дизелем на холостом ходу и на частичных режимах.

Характеристики магистральных тепловозов, выпускаемых отечественной промышленностью, представлены в таблице 1, маневровых и промышленных — в таблице 2. В обозначениях серий тепловозов используются следующие буквы: Т — тепловоз, Э — с электрической передачей, Г — с гидравлической или гидромеханической, П — пассажирский, М — маневровый, У — узкоколейный.

Преимущества тепловозов по сравнению с другими видами локомотивов определяют дальнейшие пути развития н расширения тепловозной тяги, а также совершенствование конструкций. Одной нз главных задач при этом является создание новых систем автоматического. управления, облегчающих труд машиниста. Перспективно внедрение микропроцессорной техники и ЭВМ, которые обеспечивают точное соблюдение времени движения по перегону, оптимальный режим работы силовой установки, благодаря чему возможна экономия топлива. К числу первоочередных задач относятся повышение надёжности, снижение стоимости, а также обеспечение технологичности изготовления и ремонта при техническом обслуживании, от которых зависят повышение моторесурса дизелей и увеличение межремонтных пробегов.

Внедрение полупроводниковых элементов (тиристоров) позволяет создать бесколлекторный асинхронный тяговый электродвигатель, обеспечивающий плавное регулирование скорости. Освоены и эксплуатируются на тепловозах синхронные генераторы переменного тока, создаются тепловозные асинхронные электродвигатели.

Тепловозы, выпускаемые за рубежом, имеют различные технико-экономические показатели и конструктивное исполнение (рис. 9, 10).

С конца 1980-х годов в США и Канаде сохраняется тенденция создания мощных магистральных тепловозов с электрической передачей, предназначенных для работы в диапазоне температур от —40 до 50 °C. Тепловозы серии 69РН фирмы «Дженерал моторс корпорейшен» имеют электрическую передачу переменного тока с трёхфазными асинхронными двигателями, 12-цилиндровые дизели типа 71063 мощностью 2200 кВт; максимальная скорость тепловоза 177 км/ч; сила тяги 276 кН при трогании с места и 220 кН при продолжительном режиме. В силовом оборудовании тепловоза используются тиристоры на напряжение 4500 В при силе тока до 3000 А с управляющим импульсом 1—З А. Тяговую передачу и инвертор для энергоснабжения пассажирских вагонов поставляет немецкая фирма «Сименс» («Siemens»). Тяговый импульсный инвертор с управляемыми тиристорами н фреоновым охлаждением выпускаются в модульном исполнении для питания двух асинхронных тяговых электродвигателей. С помощью инвертора, унифицированного с тяговым генератором и получающего питание от главного генератора, осуществляется электроснабжение пассажирских вагонов на переменном токе напряжением 480 В при частоте 60 Гц, мощностью 800 кВт.

В создаваемых вновь и в переоборудуемых тепловозах используется микропроцессорная техника в системах управления и контроля за работой оборудования. При перестройке тепловоза устаревшие дизели заменяют более совершенными и мощными, например, фирма «Катерпиллер» («Caterpiller») использует двигатели с программным управлением; устанавливают новые главные генераторы фирмы «Като» (Cato), электрический привод всех вспомогательных устройств, лопастной компрессор.

Наиболее распространены на железных дорогах Франции тепловозы фирмы «Альстом» с электрической передачей; мощность дизеля 2650 кВт; максимальная скорость Тепловоза 140 км/ч. На ряде тепловозов этой серии установлены дизели мощностью 3100 кВт, позволившие развивать скорость до 160 км/ч (например, на участке Париж — Нант).

В Великобритании в эксплуатации находятся грузовые тепловозы фирмы «Браш» класса 60 с 8-цилиндровым 4-тактным дизелем мощностью 3100 кВт; максимальная скорость 100 км/ч; сила тяги при трогании с места 410 кН, максимальная — 500 кН. Электрическая передача имеет главный генератор переменного тока, выпрямитель и шесть тяговых двигателей постоянного тока с независимым возбуждением. В системах регулирования дизеля и электрической передачи использован микропроцессор с датчиком скорости радиолокационного типа.

Железные дороги Польши обслуживают тепловозы фирмы «Колмекс» (Colmex), имеющие электрическую передачу. На тепловозах установлен 16-цилиндровый дизель типа 2116, который изготовляется по лицензии фирмы «ФИАТ» (FIAT), имеет мощность 2200 кВт; максимальная скорость тепловоза 140 км/ч; сила тяги 155 кН при продолжительном режиме.

На железных дорогах Чехии и Словакии, ряда других стран Европы, а также на сети отечественных железных дорог эксплуатируются тепловозы завода «ЧКД Локомотивка». На железных дорогах нашей страны эти тепловозы известны как локомотивы серии ЧМЭ, предназначены для маневровой работы. Выпущены тепловозы серии ЧМЭ2 (мощность 550 кВт, ЧМЭ3 (мощность 955 кВт), ЧМЭ5 (мощность 1470 кВт0.

Венгерские тепловозы производства предприятия «Ганц-Маваг» (Gantz-Mavag) эксплуатируются на собственных железных дорогах и экспортируются в ряд стран, в том числе в нашу страну, где известны как тепловозы серии ВМЭ1 (мощность 451 кВт), используются на маневровой работе.

Общей для зарубежных стран в перспективе создания тепловозов является тенденция увеличения частоты вращения дизеля, обеспечения нагрузки на рельс от одной колёсной пары до 300 кН, широкое применение тиристорной и микропроцессорной техники, снижение массы локомотива, выпуск универсальных тепловозов.

Отечественные тепловозы

Серия Год постройки первого образца Осевая характеристика секции Секционная мощность, кВт Осевая нагрузка, т Сила тяги длительного режима, кН Скорость длительного режима, км/ч Конструкционная скорость, км/ч Длина по автосцепкам
2ТЭ10М 1981 3о-3о 2206 226 245 24,6 100 16 969
ТЭ136 1984 2о+2о-2о+2о 4412 245 470,4 25,15 100 24 750
2ТЭ126 1987 1+2о+2о-2о+2о+1 4412 245 470,4 25,6 100 24 750
2ТЭ121 1978 3о-3о 2942 245 294 27 100 21 000
2ТЭ116 1971 3о-3о 2250 226 255 24 100 18 150
ТЭП70 1973 3о-3о 2942 220,6 167 48 160 21 700
ТЭП75 1976 3о-3о 4412 225,5 176,5 70 160 21 700
М62 1965 3о-3о 1471 190 196 20 100 17 500
ТЭ127 1985 3о-3о 1765 157 176,6 25,8 120 19 000

Источник

Ответы на популярные вопросы