Джон серл магнитный двигатель

Как собрать бестопливный генератор Джона Серла: пошаговая инструкция

Дата публикации: 1 марта 2020

Изобретение Джона Серла называют энергией третьего тысячелетия. Созданный им бестопливный генератор работает на основе уравновешенной магнитной системы, его можно использовать в качестве источника для выработки электроэнергии в домашних условиях. Несмотря на то, что первая конструкция генератора была разработана ученым еще в 1946 году, в научных журналах отсутствуют публикации о нем. Как собрать бестопливный генератор Джона Серла своими руками? Что для этого понадобится? Ответы на эти и другие вопросы – в нашей статье.

Что представляет собой генератор Серла

В основу эффекта Джона Серла легло применение магнитного поля, это принципиально новый метод получения энергии. Его суть заключается в следующем: электрическая энергия производится за счет вращения магнитных роликов вокруг намагниченных колец. Интересно, что устройство не только выделяет электричество, но и создает вокруг себя гравитационное поле.

Генератор состоит из трех концентрических колец, скрепленных между собой. Вокруг них расположены намагниченные цилиндры. Все цилиндры могут свободно вращаться по кругу.

Как работает устройство

Принцип работы генератора на эффекте Серла основан на свойстве магнитов притягиваться и отталкиваться друг от друга. Разнонаправленные полюса притягивают магниты, а одинаковые полюса отталкивают их.

Если расположить цилиндры одинаковой намагниченности вокруг основы – они начнут отталкиваться на эквидистантные расстояния. При попытке сдвинуть с места один намагниченный цилиндр сразу сдвинутся с места и все остальные, при этом расстояние между ними будет сохраняться.

Вращение основы приведет к движению роликов. Постепенно увеличивая обороты, мы сможем добиться вращения системы как единого целого на протяжении определенного времени. Как правило, движение системы обеспечивают подшипники.

При вращении цилиндры проходят через зазоры ярма, изготовленного из магнитного материала. В результате этого в намотанных на ярме катушках индуцируется электродвижущая сила (ЭДС), ее можно снимать с присоединенных к концам катушек клемм. А здесь вы сможете узнать, как собрать самодельный ветрогенератор из асинхронного двигателя.

Какие детали понадобятся

Для того чтобы сделать магнитный генератор Серла своими руками в домашних условиях, понадобятся такие детали:

Размеры статора будут зависеть от диаметра роликов. Для того чтобы собрать генератор Серла, потребуется не менее 12 намагниченных роликов, а расстояние между ними должно равняться диаметру одного ролика.

Как собрать генератор Серла: последовательность изготовления всех деталей

Изготавливаем магнитные ролики

Каждый ролик будет состоять из 8 сегментов. Внутри него будет расположен неодимовый магнит, затем кольцо пластика и обойма из металла. Для изготовления 12 роликов понадобится 96 таких сегментов.

Сделать обойму можно из алюминиевой трубы, для пластикового слоя подойдет капролон. Сначала надо нарезать на токарном станке кольца из металла и пластика. Затем запрессовать металлические кольца на пластиковые, а внутри них расположить магниты. Из полученных сегментов надо склеить магнитные ролики, по 8 сегментов каждый. Все детали должны быть одинаковых размеров.

Собираем статор

Нам понадобятся три больших магнитных кольца, сложенных вместе разнополярно. Их надо склеить в один магнит. Для изготовления металлической обоймы для магнита можно использовать алюминиевую кастрюлю подходящего диаметра или готовый круг из металла. Из кастрюли необходимо вырезать обойму, высота которой будет соответствовать высоте магнита.

Следующий этап – заливка термоклеем внутреннего объема магнита и пространства между магнитом и обоймой. Это необходимо для того, чтобы удерживать магнит в одном положении и сглаживать толчки при взаимодействии с роликами.

Изготавливаем разгонные магниты

Задача разгонных магнитов заключается в том, чтобы отталкивать ролики, когда они будут приближаться к сердечнику электромагнита. Катушку электромагнита можно изготовить своими руками, но для этого придется самостоятельно наматывать провод на сердечники. Также можно приобрести уже готовые детали. Электромагнит надо установить таким образом, чтобы концы сердечника располагались к полюсам ролика симметрично. Всего понадобится 12 электромагнитов.

Схемы управления электромагнитами

Эти элементы будут подавать ток на катушку электромагнита в тот момент, когда мимо него проходит ролик. Для этих целей можно использовать схемы с магнитным датчиком. Как только ролик приблизится к электромагниту на 1 см, датчик будет загораться, а при его уходе он погаснет. Для изготовления схемы понадобится 12 монтажных плат (их количество должно соответствовать количеству электромагнитов).

Собираем генератор

Последний этап – сборка бестопливного генератора Джона Серла своими руками. Магнит-статор располагают в центре. Затем по кругу устанавливают ролики и электромагниты. Для повышения эффективности аппарата можно установить их на оси с подшипниками, между этими элементами и статором должен быть минимальный зазор. В результате получится маховик, который будет приводиться в действие электромагнитами и импульсным током.

Таким образом, генератор Серла – это один из необычных источников энергии, работающий на основе магнитных потоков.

Вам нужно войти, чтобы оставить комментарий.

Источник

Джон серл магнитный двигатель

Целью настоящего отчета является воспроизвести экспериментальные работы, проводившиеся между 1946 и 1956 годами Дж. Серлом, включая геометрию, используемые материалы и технологию изготовления генератора на эффекте Серла (SEG).

Нижеприведенная информация получена в результате личных контактов автора с Серлом и должна рассматриваться как предварительные данные, так как дальнейшие исследования и усовершенствования могут явиться причиной изменений и добавлений к содержанию.

Конструкция

Генератор может рассматриваться как электродвигатель, состоящий только из постоянных магнитов цилиндрической формы и неподвижного кольца.
На рис.1 показан генератор простейшей формы, состоящий из неподвижного кольцевого магнита, называемого цилиндром, и некоторого количества цилиндрических магнитов, или роликов.
Серл настаивает, что роликов должно быть не менее 12, для создания 12 фаз вращения.
Допустимо и большее число роликов с пересчетом конструкции, но не менее 12-ти.

В процессе работы каждый ролик вращается вокруг своей оси и одновременно вращается вокруг основания таким образом, что фиксированная точка на боковой поверхности ролика описывает циклоиду с целым числом лепестков, как показано пунктиром на рис.2.

Эксперименты показали, что выходная мощность увеличивается с ростом количества роликов и для достижения плавного и надежного вращения отношение диаметра основания к диаметру ролика должно быть целым положительным числом, большим чем 12.

Конфигурация магнитных полей

В результате процесса намагничивания совместным постоянным и переменным магнитным полем каждый магнит приобретает характерный магнитный рисунок, находящийся на двух кольцевых дорожках и состоящий из множества северных и южных полюсов, как показано на рис. 3.

Полюса треков позволяют автоматически коммутировать вращение и создавать крутящий момент.
Как именно это будет достигнуто не понятно и требует дальнейших исследований.

Кроме того, источник энергии в настоящее время неизвестен.

Дальнейшими исследованиями необходимо также установить точное математическое соотношение между выходной мощностью, скоростью, геометрией и параметрами материалов, таких как плотность массы и электромагнитных свойств используемых материалов.

Отступление.
Этим условиям так-же соответствует такая модель:

3.1415*Dp(180mm)= 565,47mm Np=12 X=0,021221.
3.1415*Dr(30mm)=94,245mm Nr=2 X=0,021221.

В поддержку этой версии я выдвигаю 12 секционный наборной магнит статора от Фернандо Морриса:

Поведения магнитов роторов на видеороликах >>>
И теоретической модели Томилина>>>

К тому же, расстояние между двумя треками полюсов основания и роликов должно быть одинаковым для данного генератора.
Треки полюсов допускают автоматическую коммутацию и тем самым создают вращающий момент.
Каким именно образом это достигается, до сих пор неясно и требует дальнейших исследований.
Неизвестен и источник энергии.
Также в будущем должны быть установлены точные математические отношения между выходной мощностью, скоростью, формой и механическими и электромагнитными свойствами материалов.

Магнитные материалы

Данные спектрального анализа.
На рисунке выше, данные искажены, я провел исправление и вот что у меня вышло:

Катушки индуктивности

Если генератор Серла предназначается для выработки электроэнергии, к нему нужно присоединить несколько катушек.
Они находятся на С-образных сердечниках, сделанных из мягкой (шведской) стали с высокой магнитной проницаемостью.
Количество витков и диаметр провода зависит от назначения.
На рис. 4 показана примерная конструкция.

Способ изготовления

Основные стадии процесса изготовления магнитов:

1. Магнитные материалы и связующие агенты.
Требуют применения современных технологий чтобы исходные материалы были дешевле и более эффективны, чем использованные Серлом.

Правда, сегодня уже трудно установить состав, использовавшийся Серлом.
В сочетании с новыми магнитными материалами и улучшением геометрии генератора это является широкой областью приложения усилий исследователей.

Важно, чтобы количество связующего было как можно меньше для получения максимальной плотности магнитов.
Однако вполне возможно, что связующее принимает активное участие в создании эффекта Серла.
Например, диэлектрические свойства связующего компонента могут играть значительную роль в электромагнитном взаимодействии частей генератора.

3. Смешивание.
Это важный процесс, от тщательности которого зависит однородность и прочность конечного продукта. Высокая однородность может быть достигнута путем продувания смеси турбулентным потоком воздуха.

Экспериментально было установлено, что лучший результат получается, если все элементы одного генератора сделаны из одной и той же порции компонентов.

Читайте также:  Джетта фольксваген линейка двигателей

Данные, приведенные ниже, нужно рассматривать как ориентировочные.

Конкретные условия подбираются опытным путем по максимальному эффекту Серла.
Давление: 200-400 бар.
Температура: 150-200 градусов С.
Время формовки: не менее 20 минут.
Перед снятием давления заготовка должна остыть.

5. Обработка.
Эта стадия может быть исключена, если взвешивание и формовка произведены тщательно.
Тем не менее, может потребоваться полировка цилиндрических поверхностей кольца и роликов.

6. Контроль размеров и чистоты поверхностей.

Источник

omsk17d

omsk17d

Спасение нашей планеты — это грандиозная задача. Если мы захотим восстановить экологию, нужно будет сделать много полезной работы. Как только вы на это решитесь, вам понадобится очень много энергии. Она должна быть дешевой и полностью экологически чистой. Более 60 лет Джон Серл пытался дать миру новый тип энергетической системы, которая освободила бы человечество от нефтяного бремени и ажиотажа вокруг топливных ресурсов.

Данный генератор — магнитное устройство, которое является полностью магнитным. У него свой собственный двигатель, который сам включается и продолжает работать и, насколько мы можем судить, никогда не останавливается. Эффект Серла — это эффект магнетизма, основанный на магнитных полях, которые заставляют магнитные ролики непрерывно вращаться вокруг магнитных колец, генерируя электроэнергию. Никакого шума, нагрева, вибрации, никакого загрязнения — все это Генератор Серла. Он способен оторваться от земли и образовать собственное гравитационное поле. Когда вы видите такие вещи, вы понимаете, что это идеальный механизм, важнейшее изобретение, которое человек когда-либо мог создать.

Мы всего лишь пытались создать генератор, с помощью которого можно было бы освещать дома, что-то простое, поскольку я пришел к выводу, что большие генераторы на электростанциях были потерей денег и означали для нас большие проблемы с загрязнением окружающей среды в будущем. Поэтому, идея заключалась в том, чтобы создать какой-то простой генератор электричества, который было бы несложно изготовить.

Мне говорят — вы не можете сделать это, вы разрушите всю мировую экономику, вся мировая экономика базируется на нефти, и она работает, — говорят они. Что ж, она очень хорошо работает для тех, кто находится во главе экономики, но вряд ли для всех остальных. Я продолжаю утверждать, что экономика не рухнет, просто будет долгая смена парадигмы, такая же, как переход от лошадиной тяговой силы к автомобилю.

Мы построили 41 летающий диск, и они летали и при этом были полностью управляемыми. Перед этим было еще 6, которые улетели. Они были неуправляемыми. Это было устройство, содержащее все достижения науки внутри себя. Этот генератор можно было использовать в качестве источника энергии. Но именно его способность летать вызывала восторг.

Существует много компаний, занимающихся выработкой и распределением электроэнергии, крупных корпораций. Изобретение поставит под угрозу их существование. Они стараются засекретить такие изобретения, не дать им выйти на рынок, потому что ситуация на рынке изменится не в их пользу. Они хотят сохранить влияние. Нефтяные компании и ряд других крупных предприятий управляют миром. К сожалению, они управляют и большинством правительств. Джон Серл.

Онлайн просмотр пройдет на странице http://zaryad.com/tv/

Русские физики могут изменить всю мировую экономику. (Продолжение статьи о Джоне Серле)

Ну да ладно! Это всё лирика, мечты.

Для специалистов выкладываю описательную часть патента: http://n-t.ru/tp/ts/dms.htm

Экспериментальное исследование нелинейных эффектов в динамической магнитной системе

Владимир Рощин, Сергей Годин

Цель нашей работы заключалась в экспериментальном исследовании физических эффектов, возникающих в системе с вращающимися постоянными магнитами [1] и изучении сопутствующих эффектов. Построенную нами экспериментальную установку будем далее по тексту называть конвертором. Вся лабораторная система конвертора была создана исходя из собственных теоретических взглядов, имеющейся технологии и существующих на тот момент финансовых возможностей. Ниже описывается технология изготовления этого конвертора и результаты его испытаний.

Описание технологии

Конструкция лабораторного стенда конвертора с измерительным комплексом обеспечивают широкий диапазон исследований, устанавливают необходимый уровень контроля за рабочим процессом и предоставляют необходимую безопасность экспериментов.

Рис. 1. Вариант однорядного выполнения конвертора

Высокочастотное подмагничивание не применялось. Технологию импринтинга, описанную в [1], было решено заменить применением поперечных магнитных вставок с вектором намагниченности, направленным под углом 90 градусов к вектору основной намагниченности статора и роликов. Для этих поперечных вставок использовался модифицированный материал NdFeB с остаточной индукцией 1,2 Тл с коэрцитивной силой и магнитной энергией несколько большей Нс ≈ 1000 кА/м; W ≈ 360 кДж/м 3 чем в базовом материале рабочего тела. На рис. 1 и рис. 2 изображено совместное расположение статора 1, элементов ротора – роликов 2 и способ их взаимодействия посредством поперечных магнитных вставок на статоре и роторе по принципу шестеренчатого зацепления. Между поверхностью статора и роликами был оставлен воздушный зазор – δ, имевший величину около 1 мм.

Статор и ролики были обёрнуты сплошным слоем меди толщиной 0,8 мм, имевшей непосредственный электрический контакт с магнитами статора и роллеров. Расстояние между вставками на роликах и вставками на статоре находится в определенной зависимости, необходимой для возникновения критического режима.

Рис. 2. Способ организации магнитного зацепления статора и роликов

Диаметр статора 1 и ротора 2 (рис. 2) выбирается таким образом, чтобы отношение диаметров статора D и ролика d было целым числом, кратным 4. Это является одним из условий пространственного квантования и достижения резонансного режима между элементами рабочего тела устройства. Необходимое позиционирование обеспечивает условия для возникновения в ближней зоне рабочего тела режима стоячих электромагнитных волн.

Рис. 3. Общая схема однорядного магнито-гравитационного конвертора

Элементы магнитной системы были собраны в единую конструкцию на платформе, собранной из немагнитных сплавов. На рис. 3 изображен общий вид платформы с однорядным конвертором. Эта платформа была снабжена пружинами, амортизаторами и имела возможность вертикального перемещения по трём направляющим. Величина перемещения измерялась с помощью индукционного датчика перемещений 14, таким образом сразу определялось изменение веса платформы в процессе эксперимента. Общий вес платформы с магнитной системой в исходном состоянии составлял 350 кг.

Статор 1 был укреплён неподвижно, а ролики 2 были укреплены на общем подвижном сепараторе 3 с помощью динамических воздушных подшипников с целью максимального снижения трения. Для передачи вращательного момента сепаратор был жёстко связан с основным валом 4 устройства. Основной вал посредством фрикционных обгонных муфт 5 был связан с пусковым двигателем 6, выводящим устройство в режим самоподдержания вращения и электродинамическим генератором 7. Вдоль ротора были расположены электромагнитные преобразователи 8 с разомкнутыми магнитопроводами 9. Магнитные ролики 2, пересекали магнитопроводы и замыкали магнитный поток через электромагнитные преобразователи 8, наводили в них ЭДС, которая поступала непосредственно на нагрузку 10 в виде ламп накаливания. Электромагнитные преобразователи 8 были оснащены электрическим приводом 11 и обладали возможностью плавно перемещаться по направляющим 12.

Для исследования влияния на характеристики конвертора приложенного высокого внешнего напряжения была смонтирована система радиальной электрической поляризации. На периферии устройства между электромагнитными преобразователями 8 были установлены кольцевые электроды 13, имеющие с роликами 2 воздушный зазор 10 мм. Электроды подсоединены к высоковольтному источнику напряжения, причём положительный потенциал был приложен к статору, а отрицательный к кольцевым электродам. Напряжение высоковольтного источника регулировалось в пределах 0. 20 кВ. В экспериментах обычно использовалось предельное значение в 20 кВ.

На случай экстренного торможения ротора на основном валу устройства был установлен фрикционный дисковый тормоз от автомобиля. Электродинамический генератор 7 подсоединялся к активной нагрузке через набор переключателей, обеспечивающий ступенчатое подсоединение нагрузки от 1 до 10 кВт с шагом 1 кВт.

В испытуемом варианте конвертор имел в своём составе масляный фрикционный генератор тепловой энергии 15, предназначенный для отвода избыточной мощности (свыше 10 кВт) в теплообменный контур. Но так как реальная мощность конвертора в эксперименте не превысила 7 кВт, масляный фрикционный тепловой генератор не использовался. Полная стабилизация оборотов ротора осуществлялась выдвижными электромагнитными преобразователями, работающими на дополнительную нагрузку в виде набора ламп накаливания с суммарной мощностью 10 кВт.
(продолжение во 2-ой части)

Источник

Джон серл магнитный двигатель

КОНСТРУКЦИЯ.

Конструкция генератора состоит из нескольких основных деталей:

• Магнитного статора
• Магнитных роликов
• Разгонных электромагнитов
• Токосъёмных катушек
• Электроники управления электромагнитами
• Электроники управления вырабатываемым электричеством
• Корпуса генератора.

Изготовление каждой детали для облегчения повторного изготовления будет подробно описываться, сопровождаться фотографиями.

Глава 2. Изготовление магнитных роликов.

Как уже говорилось ранее, количество роликов должно быть не менее 12 или большее, но иметь четное количество. Это оптимально для окружности. Мои 12 роликов выполнялись по описанию изготовления Джоном Серлом. То есть, каждый ролик состоит из восьми сегментов (можно и больше с учетом от высоты статора), каждый сегмент выполнен из трех элементов: неодимового магнита в центре, потом кольцо пластика и наружная металлическая (немагнитная) обойма. Сразу оговорюсь, что все металлы используемые для постройки генератора должны быть немагнитными ( нержавейка, медь, латунь, алюминий и т.д.). В ходе экспериментирования, я пришел к выводу, что изготавливать ролики из сегментов вообще нет необходимости, Поскольку лучшего эффекта по сравнению с тем, что ролики изготавливались бы просто в цилиндрическом корпусе, я не увидел. У Серла сегменты, якобы представляют коротко- замкнутую катушку, и при вращении способствуют тому, что не дают роликам слететь с описываемой орбиты. С моей точки зрения, да думаю и с точки зрения физических свойств материалов, это полная чушь. Говоря проще, всем известно, что противоположные полюса магнитов притягиваются, а если эти полюса вытянуты и к ним приложить цилиндр с аналогичным типом полюсовки, то этот цилиндр при воздействии на него приложенной силы, будет двигаться с вращением вокруг своей оси в направлении приложенной силы. На мой взгляд, чем больше дисковых магнитов составлено в ролике, тем лучше ролик будет удерживаться на статоре (большее количество магнитных дорожек). Этот эффект и лежит в основе нашего генератора. Сразу замечу, что это свойство открыл не Джон Серл. Он просто первым использовал этот эффект для вращения своих роликов. В целях чистоты экспериментальной постройки, я буду описывать изготовление роликов из сегментов. И так, для изготовления роликов диаметром 30 мм. берем:
1. 96 магнитов N42 размерами 19х5 мм.
2. пруток капролона диаметром 30 мм.(можно из любого пластика) длиной 1 метр
3. трубу алюминиевую диаметром 30 мм. длиной 1 метр.
4. сверло с размером наружного диаметра магнита
5. секундный клей
6. эпоксидный клей

Читайте также:  Коробка переключения передач состоит

Фото: пруток капролона диаметром 30 мм

Фото: алюминиевая труба диаметром 30 мм толщиной стенки 1 мм.

Для нарезания колец из алюминиевой трубы и пластикового прутка потребуется токарный станок по металлу. Я лично токарного станка не имею и просил выточить детали знакомого токаря (всего за 500 рублей). Пластиковый пруток (я покупал капролон) длиной 1 м. на базе стоит не более 300 рублей, алюминиевая труба длиной 2 метра- 200 рублей, 50 рублей стоит сверло на 19 мм., эпоксидка 70 рублей, секундный клей 17 рублей. Самое дорогое магниты. Покупать их в России очень дорого. В среднем цена аналогичного магнита около 200 рублей за штуку (в сумме 19200 руб. ). Поэтому я покупал магниты в интернет- магазине (https:// rutaobao.com) из Китая, где в зависимости от количества магнитов, снижается их стоимость, и один неодимовый магнит (при покупке 96 штук) стоит меньше доллара. Там же я покупал сразу и три больших ферритовых магнита 200х110х20 для будущего статора. Вся покупка с пересылом стоила мне рублей и заняла по времени около месяца. Это еще получилось дорого, так как ферритовые магниты весят каждый по 3 кг. С лишним и я много заплатил за посылку. А сколько стоила бы посылка только с неодимовыми магнитами, а…? Сравните цены с российскими магазинами. Забегая вперед, дешевле изготовить статор из небольших дисковых ферритовых магнитов, купив их в России, но об этом я расскажу в главе по изготовлению статора.
На токарном станке нарезаем пластиковый пруток на кольца в количестве 96 штук, внутренний диаметр под диаметр магнита 19 мм ( по технологии изготовления кольца на станке сначала делается отверстие сверлом на 19, а потом отрезается в размер), наружный диаметр под размер внутреннего диаметра трубы 28 мм., толщина 5 мм, как и у магнита. Алюминиевая труба нарезается на кольца шириной 4,5 мм. Когда все детали выточены на станке, сначала делаем запрессовку алюминиевого кольца на пластиковое кольцо, немного не доводя алюминиевое кольцо до низа ( толщина 4,5 мм. надета на 5 мм пластик). Делается это на ровной металлической поверхности небольшим молотком, постукивая по периметру алюминиевого кольца. При точной расточке, алюминиевое кольцо будет садиться на пластиковое в натяг. Перед впрессовкой в сегмент магнита, все магниты либо должны находиться в заводской упаковке, когда между ними проложены пластиковые кольца, либо должны быть на значительном друг от друга расстоянии. Это исключит резкое примагничивание их к друг другу. От этого магниты могут сломаться! После этого, смазываем внутреннюю поверхность пластикового кольца секундным клеем, и быстро впрессовываем туда магнит, простукивая через проставку с ровной поверхностью ( у меня была латунная). Некоторые магниты не нуждались в такой запрессовке, они запрессовывались усилием большого пальца руки. Сегменты с впрессованным магнитом держите на расстоянии друг от друга! Когда все сегменты будут изготовлены таким образом, для образования каждого ролика необходимо склеить эпоксидным клеем по 8 сегментов. Получится ролик размером 40х30 мм. При склейке сегментов эпоксидным клеем, следует обратить внимание на правильную предварительную установку края склеиваемого сегмента на край другого сегмента, как это показано на фотографии. Иначе можно прищемить кожу на пальцах, так как сложенные вместе магниты становятся более сильными, нежели один магнит. По мере составления ролика из сегментов, необходимо прокатать ролик на ровной поверхности, чтобы он стал ровным цилиндром. Излишки выступившего эпоксидного клея, срезаются острым ножом после его затвердения. Выполненные таким образом ролики должны получиться одинакового веса и размеров. Лучше, если вы изготовите запасной тринадцатый ролик, предварительно купив не 96, а 102 магнита.

Фото: Восемь магнитов для сборки ролика

Фото: Остаток капролонового прутка.

Фото: Выточенные заготовки капролоновых и алюминиевых колец.

Фото: Запрессованное алюминиевое кольцо на капролоновом кольце.

Фото: Магнит перед запрессовкой в сегмент.

Фото: Готовый сегмент ролика с запрессованным магнитом.

Фото: Готовые сегменты, сложенные в стороне.

Фото: Правильная укладка сегментов на края перед склейкой.

Фото: Нанесение эпоксидного клея на сегмент ролика.

Фото: Сегменты, склеенные в один ролик.

Глава 3. Изготовление магнитного статора.

Как уже упоминалось ранее, далее будут описаны две различные конструкции магнитных статоров. Первая с использованием купленных в Китае трех больших ферритовых магнитов размерами 200х110х20 мм. и вторая, выполненная из составных ферритовых магнитов размерами 30х5 мм., закупленных в одном из интернет- магазинов в Москве. Сразу скажу, что обе конструкции не отличаются своей функциональностью друг от друга, но вторая конструкция получается дешевле в два раза и при этом более универсальна, так как из небольших по размеру магнитов можно собрать статор любого диаметра и высоты. Теперь более подробно.
Статор из Китайских магнитов.
Магниты представляют из себя три одинаковых кольца размерами 200х110х20 мм. Все кольца сложены разнополярно вместе и склеены в один магнит. Складывать осторожно с боку, а не с верху! В результате, высота статора составляет 60 мм., что дает запас от размеров ролика по 10 мм с верху и с низу. Наружная металлическая обойма статора выполнена из алюминия толщиной 1,5 мм. и так же имеет высоту 60 мм., наружный диаметр 222 мм. В целях экономии материальных средств и простоты изготовления, обойма вырезалась ручной ножовкой по металлу из алюминиевой кастрюли. Это экономит еще пару тысяч рублей на чушке или круге из немагнитных металлов и стоимости токарных работ. Кастрюля же стоит 240-300 рублей. После разметки на поверхности кастрюли линий разреза, кастрюля зажимается в перевернутых под 90 градусов небольших тисках и разрезается ножовкой по металлу. Вся процедура с перекурами занимает 20-25 минут. После этого, места разреза образовавшегося кольца обрабатываются до точных размеров (нанесение линий разреза можно взять с запасом в 1 мм.) напильником. Внутреннюю поверхность кольца обезжиривают бензином или другой жидкостью, чтобы лучше склеились поверхности и обрабатывают слегка грубой шкуркой. Обезжириваем и с наружную боковую поверхность магнита. Далее, на листе фанеры наносится чертеж статора виде перекрестия с центром и окружностями (внутренней и внешней). Это нужно для центровки магнита и алюминиевой обоймы относительно центра. Потом поверхность натирают воском свечки, чтобы легко отделить залитый статор от фанеры (это при заливке эпоксидкой). При горячей заливке достаточно положить лист картона или твердой бумаги или предварительно нанесли слой краски. Когда детали отцентрованы, алюминиевую обойму фиксируют на фанере, вбивая вплотную к наружной стороне сапожные гвоздики. Это сделано, чтобы избежать смещения обоймы. В нижней части снаружи обоймы необходимо проклеить жидкими гвоздями. Если не планируете заливать внутренний объем магнита, то это же надо проделать и в низу во внутреннем объеме магнита. Когда все готово, берем жестяную банку емкостью 1 литр и накладываем туда отрезки клеевых стержней для клеевого пистолета. Плавим их на малом огне (газовой плите), и когда стержни превратятся в прозрачный однородный состав, выливаем его в промежуток между ферритовым магнитом и алюминиевой обоймой до заполнения объема. Даем остыть несколько часов. Заливка становится матовой. Клеевые стержни имеют более низкую температуру плавления, поэтому заливка именно этим разогретым составом не повлияет на намагниченность ферритового магнита. Вообще назначение этой заливки двойное. Она удерживает сам магнит, и она же сглаживает магнитные линии при взаимодействии боковой части роликов и боковой поверхности магнита статора. В противном случае ролики двигались бы по статору ступенчато, напоминая зубчатую передачу. А так, они будут двигаться ровно, без рывков. Такой вид заливки дает еще экономию в три тысячи рублей (стоимость пластикового круга 3500 руб.), при том же эффекте. Расстояние от магнита статора до наружной части обоймы рассчитывалось экспериментально, поскольку от ее толщины зависит сила притяжения магнита статора с роликами, учитывая, что ролики должны четко удерживать свой вес и находиться вертикально в средней части поверхности статора. Более подробные расчеты не привожу. Для простоты эксперимент делается примерно так: берется склеенный статор из магнитов (ёще не залитый). Между магнитами статора и готовым роликом ставятся пластинки из пластика (например, ученические линейки). Подбором количества пластин добиваются, чтобы ролик с расстояния в 4 см. сам притягивался к пластинам в сторону магнита статора и зависал за счет магнитного притяжения. При этом ролик оставался бы в центре, устойчиво держал сам себя и при покачивании рукой в стороны имел плавный ход (без рывков). Толщина пластин замеряется. Это значение и будет расстоянием для заливки пустоты между магнитами статора и наружной металлической обоймой. Это значение должно учитываться при расчете наружного диаметра статора. Кроме того, от силы притяжения магнита статора и роликов зависит уменьшение центробежной силы, действующей на ролик при вращении вокруг статора. При расчетах, центробежная сила, действующая на ролик при заданной скорости 10 оборотов в секунду, достигает более 50 кг.! Это в последствии будет учитываться при изготовлении электромагнитов, которые будут удерживать ролики на своих орбитах при их вращении вокруг статора. Для отделения магнитного статора от фанеры, необходимо вытащить пассатижами гвозди из фанеры, острым ножом срезать слой жидких гвоздей, приподняв от поверхности и удерживая за статор, ударить молотком по фанере. Статор освободится от фанеры. Часть краски от фанеры на статоре можно смыть растворителем. Статор готов.

Читайте также:  Если лопнет подушка двигателя

При горячей заливке первого статора или при заливке эпоксидной смолой второго статора, перед заливкой необходимо выровнять поверхности, где находится статор, строительным уровнем! Тогда заливка будет ровная и не потечет через край обоймы. Кроме того, можно изготовить вторую фанерную форму, и скрепить ее с уже имеющейся болтами. В этом случае заливка получится идеальной с обеих сторон!

Фото: Собранные в один три китайских магнита 200х110х20 мм.

Фото: Выпиловка обоймы

Фото: Остаток кастрюли после распила.

Фото: Выпиленная алюминиевая обойма для статора.

Фото: Размещение магнита статора на фанере.

Фото: Отцентровка магнита и обоймы относительно центра.

Фото: Закрепление обоймы гвоздями к фанере.

Фото: Упаковка клеевых стержней.

Фото: Клеевые стержни перед расплавкой.

Фото: Заливка статора.

Фото: Статор после заливки (центр еще не залит до конца).

Фото: Статор после остывания заливки с роликом.

Статор из дисковых магнитов.

Рис. Последовательность склейки статора из дисковых магнитов.

Рис. Противоположность магнитных дорожек (треков) между статором и роликом.

Расстояние между магнитным кольцом и алюминиевой обоймой, лучше залить эпоксидкой, предварительно обезжирив поверхности и промазав жидкими гвоздями (можно герленом или даже пластилином) щели, чтобы избежать протекания эпоксидного клея. Для экономии эпоксидного клея, в центр такого статора можно вставить отрезок пластиковой трубы диаметром 110 мм. чуть большей высоты от канализационной трубы. В хозяйственном магазине 0,5 метра такой трубы стоит 50 рублей. Некондицию вам так отдадут, если попросите. После затвердевания эпоксидного клея, лишняя часть трубы отрезается ножовкой по металлу. Подтёки клея удаляются. Нижнюю бумагу можно оторвать. Статор готов.

Фото: Склейка дисковых магнитов по линиям чертежа.

Фото: Дисковые магниты из упаковки.

Фото: Проверка вертикального уровня при склейке магнитов.

Фото: Упаковка торговой фирмы.

Фото: Готовый статор с отвердевшей эпоксидной заливкой и двумя роликами
(центральная труба диаметром 110 мм. еще не обрезана).

В ходе испытаний двух типов статоров при прокрутке на них роликов, разницы не обнаружено! Ролики одинаково крутятся как на статоре с большими магнитами, так и на статоре с наборным магнитом, описанным выше. Какой делать Вам? Выбирайте сами.

Глава 4. Изготовление разгонных электромагнитов.

Назначение разгонного электромагнита отталкивать магнитные ролики при их прохождении мимо сердечника электромагнита. Это происходит за счет импульсной подачи постоянного тока на катушки электромагнита в необходимый момент. На концах П-образного сердечника в этот момент возникают разные магнитные полюса, которые приложены к одинаковым полюсам магнитного ролика. Таким образом, полюса ролика и сердечника электромагнита отталкиваются, и ролик получает поступательное вращение по орбите вокруг статора.
Изготовление разгонных магнитов дело длительное и трудоемкое, поскольку связана с намоткой большого числа витков провода, то есть изготовлением катушки электромагнита. Немного теории по изготовлению электромагнитов. Медный провод определенного диаметра (сечения) имеет свое электрическое сопротивление (Ом) по отношению к длине (м.). Это вы можете выяснить из прилагаемой таблицы. В установке Джона Серла, как это описано в разных источниках, ролики вокруг магнитного статора начинают вращаться, при подаче на электромагниты постоянного напряжения в несколько вольт и тока около 0,6 А. Все катушки двенадцати электромагнитов запитаны параллельно. Следовательно, общий ток цепи будет равен: 0,6 х 12 = 7,2 А при постоянном напряжении на всех катушках электромагнитов. Зададим напряжение питания катушек равным 12В. Тогда, сопротивление обмотки катушки электромагнита вычисляется
по Закону Ома: I = U/R, отсюда R = U/I =12 : 0,6 =20 Ом.

Таблица основных параметров обмоточных медных проводов.

Для тех, кто все-таки хочет сделать именно С-образные сердечники, не найдя других подходящих, рекомендую выполнить их из стальной ленты (шинки) толщиной 0,5 мм., шириной 15-20 мм. путем многократного сложения до толщины примерно 10 мм. Только предварительно ленту надо отпустить в огне углей уличного костра в течении нескольких часов. Она перестанет пружинить, станет мягкой, и будет иметь меньшую остаточную намагниченность, то есть станет близка по характеристикам к необходимым для изготовления сердечника электротехническим сталям.

Фото: Металлическая лента (шинка) 16х0,5 мм.

Фото: Принцип сложения лены при изготовлении сердечника.

Теперь сам процесс изготовления электромагнитов на примере одного из двенадцати штук. Как видно на рисунке, электромагнит устанавливаться будет таким образом, что концы сердечника будут находиться симметрично к полюсам ролика и в минимальном воздушном зазоре по отношению к верхнему и нижнему полюсу ролика.

Это обеспечит максимальное отталкивание ролика при подаче питания на катушку электромагнита.

Фото: Бабина с проводом 0,28 мм.

Фото: Подготовленные к намотке сердечники.

Фото: Склейка каркаса катушки из оргстекла толщиной 2 мм.

Фото: Сердечники с приклеенными каркасами.

Сама же катушка электромагнита располагается в средней части сердечника. Длина намотки образуется из размера сердечника- 30 мм. Для удобства намотки, по краям катушки сделаны перегородки, выполняющего роль каркаса катушки, чтобы наматываемый провод не сваливался. Они приклеены к сердечнику. На торцах каркаса выполнены отверстия под провода (начало, конец). Сам сердечник в месте укладывания провода обмотан слоем изоленты, чтобы не повредить эмалевый слой на проводе о кромки сердечника. Начало обмотки обозначается, к примеру, завязанным узлом на проводе. Намотка провода выполняется в навал, равномерно распределяясь по ширине каркаса. Всего 1200 витков проводом диаметром 0,28 мм. (около 60 грамм провода). В отсутствие намоточного станка, чтобы не сбиться со счета выполненных витков, удобно записывать количество намотанных витков на листе бумаги в форме таблицы или чему-нибудь подобного, скажем, по 100 витков, отмечая цифрой или галочкой. Катушка получается сопротивлением около 36,3 Ом. По окончании намотки, катушка обматывается изолентой. Таким образом, изготовляется 12 электромагнитов.

Фото: Сердечники с намотанными катушками.

Фото: Готовый электромагнит.

Глава 5. Изготовление схем управления разгонных электромагнитов.

Смысл схемы управления разгонных электромагнитов в том, что при прохождении мимо электромагнита магнитного ролика, последний должен отталкиваться от торцов сердечника электромагнита за счет импульсной подачи тока на катушку электромагнита в нужный момент. Для этой цели используется схема с применением магнитного датчика на эффекте Холла китайского производства NJK-5001C. Стоимость одного такого датчика около 2$. Эти датчики так же заказывались через интернет. Датчик нормально разомкнутый, NPN типа. Позволяет использовать напряжение питания от 6 до 36 Вольт, с выходным током 200 мА. Датчик снабжен световым индикатором включения на торце, где расположены три его вывода. Он выполнен в виде резьбовой трубки с гайками крепления, диаметр резьбы 8 мм., длина 30 мм., что очень удобно для его крепления. Датчик включается при приближении магнитного ролика на расстоянии 10 мм. и выключается при его уходе. Частота переключений, с которой может работать датчик 320 кГц! Максимальную скорость вращения генератора, исходя из количества роликов при одном полном обороте, можете прикинуть сами…
Вся схема состоит из двенадцати монтажных плат по количеству электромагнитов. Плата изготовлена из одностороннего, фольгированного стеклотекстолита 1,5 мм. с применением фоторезистивного лака, путем травления в хлорном железе. Технологию этого процесса описывать не буду, при необходимости, ее можно прочитать в многочисленных статьях из интернета. Принципиальная, электрическая схема и рисунок печатной платы приведены ниже.

Под заказ возможно утопленное исполнение датчиков.

Схема включения датчиков
Тип NPN, нормально разомкнутые

Рис. Принципиальная электрическая схема с китайским датчиком

Рис. Расположение выводов транзистора.

Помимо магнитного датчика основным ее элементом является транзистор TIP 42C, PNP типа, используемый как электронный ключ (можно использовать и любые другие, подходящие по параметрам). Транзистор позволяет коммутировать напряжение до 100 Вольт, ток до 6А. Для ограничения тока проходящего через магнитный датчик Холла на базу транзистора, в схеме применен резистор сопротивлением 100 Ом. Расположение деталей по рисунку платы, по-моему, будет понятно всем. Радиодетали паяются на плате. Правильно собранная схема в наладке не нуждается.

Фото: Печатная плата со стороны пайки.

Фото: Расположение радиодеталей после пайки.

Фото: Китайский магнитный датчик NJK-5001C.

Фото: Потребляемый одной схемой ток 20мА при питании 12 В на холостом ходу (датчик в выключенном состоянии).

История магнитного генератора Джона Серла (видео / док. рус.)

Источник

Ответы на популярные вопросы