Как изготовить двигатель видео

Как сделать двигатель внутреннего сгорания своими руками?

Самодельный двигатель можно изготовить несколькими способами. Обзор начнем с биполярного или шагового варианта, который представляет собой электрический мотор с двойным полюсом без щеток. Он имеет питание постоянного тока, разделяет полный оборот на равные доли. Для функционирования данного прибора потребуется специальный контроллер. Кроме того, в конструкцию приспособления входит обмотка, магнитные элементы, передатчики, сигнализаторы и узел управления с панелью приборов. Основное предназначение агрегата – обустройство фрезеровочных и шлифовальных станков, а также обеспечение работы различных бытовых, производственных и транспортных механизмов.

Типы моторов

Самодельный двигатель может иметь несколько конфигураций. Среди них:

Привод с постоянным магнитом оборудуется основным элементом в роторной части. Функционирование таких приборов основано на принципе притяжения или отталкивания между статором и ротором приспособления. Такой шаговый электродвигатель оснащен роторной частью из железа. Принцип его работы заключается на фундаментальной основе, согласно которой, предельно допустимое отталкивание производится с минимальным зазором. Это способствует притяжению точек ротора к полюсам статора. Комбинированные устройства сочетают в себе оба параметра.

Еще один вариант – это двухфазные моторы шагового типа. Прибор представляет собой простую конструкцию, может иметь два типа обмотки, легко устанавливается в необходимом месте.



Монополярные модификации

Самодельный двигатель этого типа состоит из единой обмотки и центрального магнитного крана, влияющего на все фазы. Каждый отсек обмотки активируется для обеспечения определенного магнитного поля. Так как в подобной схеме полюс в состоянии функционировать без дополнительного переключения, коммутация пути и направления тока имеет элементарное устройство. Для стандартного мотора со средней мощностью хватает одного транзистора, предусмотренного в оснащении каждой обмотки. Типичная схема двухфазного двигателя предполагает шесть проводов на выходном сигнале и три аналогичных элемента на фазе.

Микроконтроллер агрегата может использоваться для активизации транзистора в автоматически определенной последовательности. При этом обмотки подключаются посредством соединения выходных проводов и постоянного магнита. При взаимодействии клемм катушки вал блокируется для проворачивания. Показатель сопротивления между общим проводом и торцовой частью катушки пропорционален аналогичному аспекту между торцами проводки. В связи с этим длина общего провода в два раза больше, чем соединительная половина катушки.

Мини-сопла

Далее нужно взять кусок медной трубки длиной 15-20 см. Важно, чтобы внутри она была полой, так как это будет наш главный механизм приведения конструкции в движение. Центральную часть трубки оборачивают вокруг карандаша 2 или 3 раза, так, чтобы получилась небольшая спираль.

Теперь необходимо разместить этот элемент так, чтобы изогнутое место размещалось непосредственно над фитилем свечки. Для этого придаем трубке формы буквы «М». При этом выводим участки, которые опускаются вниз, через проделанные отверстия в банке. Таким образом, медная трубка жестко фиксируется над фитилем, а ее края являются своеобразными соплами. Для того чтобы конструкция могла вращаться, необходимо отогнуть противоположные концы «М-элемента» на 90 градусов в разные стороны. Конструкция парового двигателя готова.

Биполярные варианты

Самодельный шаговый двигатель этого типа оборудован одной обмоткой фазы. Поступление тока в нее осуществляется переломным способом при помощи магнитного полюса, что обуславливает усложнение схемы. Она обычно агрегирует с соединяющим мостом. Имеется пара дополнительных проводов, которые не являются общими. При смешивании сигнала такого мотора на повышенных частотах эффективность трения системы снижается.

Создаются также трехфазные аналоги, имеющие узкую специализацию. Они применяются в конструкции станков с ЧПУ, а также в некоторых автомобильных бортовых компьютерах и принтерах.

Устройство и принцип работы

При передаче напряжения клеммам щетки двигателя приводятся в непрерывное вращение. Установка на холостом ходу уникальна, поскольку преобразовывает входящие импульсы в заранее определенную позицию имеющегося ведущего вала.

Любой импульсный сигнал воздействует на вал под конкретным углом. Такой редуктор максимально эффективен, если ряд магнитных зубцов размещен вокруг центрального зубчатого железного стержня или его аналога. Электрические магниты активируются от наружной контрольной цепи, состоящей из микрорегулятора. Для начала поворота вала двигателя один активный электромагнит притягивает к своей поверхности зубчики колеса. При их выравнивании по отношению к ведущему элементу они немного перемещаются к очередной магнитной детали.

В шаговом электродвигателе первый магнит должен включаться, а следующий элемент – деактивироваться. В результате шестерня начнет вращение, постепенно выравниваясь с предыдущим колесиком. Процесс повторяется поочередно требуемое число раз. Такие обороты и получили название «постоянный шаг». Скорость вращения мотора можно определить путем подсчета количества шагов для полного оборота агрегата.

Подключение

Подсоединение мини-двигателя, сделанного своими руками, осуществляется по определенной схеме. Основное внимание обращается на количество проводов привода, а также предназначение прибора. Моторы шагового типа могут оснащаться 4, 5, 6 или 8 проводами. Модификация с четырьмя элементами проводки может эксплуатироваться исключительно с биполярным приспособлением. Любая фазная обмотка имеет два провода. Для определения необходимой длины подключения в пошаговом режиме рекомендовано использовать обычный метр, позволяющий достаточно точно установить необходимый параметр.

На мощном шестипроводном двигателе предусмотрена пара проводов для каждой обмотки и центрирующий кран, который может подключаться к моно или биполярному устройству. Для агрегации с одиночным приспособлением используются все шесть проводов, а для парного аналога достаточно будет одного конца провода и центрального крана каждой обмотки.

Результат

В итоге должна получиться следующая конструкция. В малую банку заливается вода, которая через отверстие в дне вытекает в медную трубку. Под спиралью разжигается огонь, который нагревает медную емкость. Горячий пар поднимается по трубке вверх.

Для того чтобы механизм получился завершенным, необходимо присоединить к верхнему концу медной трубки поршень и маховик. В итоге тепловая энергия горения будет преобразовываться в механические силы вращения колеса. Существует огромное количество различных схем для создания такого двигателя внешнего сгорания, но во всех них всегда задействованы два элемента — огонь и вода.

Кроме такой конструкции, можно собрать паровой двигатель Стирлинга своими руками, но это материал для совершенно отдельной статьи.

Всем привет! С вами снова kompik92! И сегодня и мы будем делать паровой двигатель! Думаю каждому было когда-то хотелось сделать паровой двигатель! Ну так давайте сделаем ваши мечты реальностью!

Читайте также:  139qmb как снять двигатель

У меня есть два варианта его сделать: лёгкая и сложная. Оба варианта очень классные и интересные и если вы думаете что тут будет только один вариант, то вы правы. Второй вариант я выложу немного позже!

И давайте сразу к инструкции!

А вот и инструкция для варианта №1 :

Как сделать двигатель своими руками?

Для создания элементарного мотора потребуется кусок магнита, сверло, фторопласт, проволока из меди, микрочип, провод. Вместо магнита можно использовать ненужный виброзвонок сотового телефона.

В качестве детали вращения используется сверло, поскольку инструмент оптимально подходит по техническим параметрам. Если внутренний радиус магнита не соответствует аналогичному аспекту вала, можно использовать медную проволоку, намотав ее таким образом, чтобы убрать люфт вала. Такая операция дает возможность увеличить диаметр вала в точке соединения с ротором.

В дальнейшем создании самодельного двигателя потребуется сделать втулки из фторопласта. Для этого возьмите подготовленный лист и проделайте отверстие диаметром 3 мм. Затем сконструируйте трубку-втулку. Вал необходимо отшлифовать до диаметра, обеспечивающего свободное перемещение. Это позволит избежать излишнего трения.

Емкость для воды

Теперь необходимо взять еще одну банку из-под краски, но уже меньшего размера. В центре ее крышки сверлят отверстие диаметром в 1 см. Сбоку банки проделывают еще два отверстия — одно почти у дна, второе — выше, у самой крышки.

Берут два корка, в центре которых проделывают отверстие с диаметров медной трубки. В один корок вставляют 25 см пластиковой трубы, в другой — 10 см, так, чтобы их край едва выглядывал из пробок. В нижнее отверстие малой банки вставляют корок с длинной трубкой, в верхнее — более короткую трубку. Меньшую банку размещаем на большой банке краски так, чтобы отверстие на дне было на противоположной стороне от вентиляционных проходов большой банки.

Финальная стадия

Далее производится намотка катушек. Каркас требуемого размера зажимается в тисах. Чтобы намотать 60 витков, понадобится 0,9 метра провода. После проведения процедуры катушка обрабатывается клеевым составом. Лучше всего эту деликатную процедуру проводить с микроскопом или увеличительным стеклом. После каждой двойной обмотки каплю клея внедряют между втулкой и проволокой. Один край каждой обмотки спаивается между собой, что даст возможность получить единый узел с парой выходов, которые паяются к микрочипу.

Параметры технического плана

Мини-двигатель, сделанный своими руками, в зависимости от конструкционных особенностей, может иметь различные характеристики. Ниже приведены параметры самых популярных шаговых модификаций:

Зная, как сделать двигатель в домашних условиях, необходимо помнить о том, что скорость крутящего показателя шагового мотора будет трансформироваться прямо пропорционально аналогичному параметру тока. Понижение линейного момента на высоких скоростях напрямую зависит от схемы привода и индуктивности обмоток. Двигатели со степенью защиты IP 65 рассчитаны на суровые условия работы. По сравнению с серверами, шаговые модели работают намного дольше и продуктивнее, не требуют частого ремонта. Однако у серводвигателей немного другая направленность, поэтому сравнение этих типов не имеет особого смысла.

Простейшие двигатели, собираемые за 5 минут

Первый униполярный двигатель
Фарадея можно собрать за минуту. Необходимо совсем мало деталей. Все они, за исключением провода, есть на фотографии.

Нужен один неодимовый магнит:

диск или пруток с аксиальным намагничиванием (на одной плоской стороне южный полюс, а на другой северный). Подойдёт любой из четырёх с фотографии.

Шуруп, гвоздь или саморез

из примагничивающегося материала. Длина примерно 45 мм. Более короткие или более длинные могут снижать скорость вращения. Острый конец способствует лёгкой и быстрой работе.

AA 1,2 В и
провод
подходящей длины.

Устройство собирается таким образом: магнит прикрепляется к головке шурупа. Конец шурупа за счёт этого примагничивается к аккумулятору. Через скользящий контакт ток подаётся к магниту. Начинается вращение.

Смена полюсов магнита или полярности аккумулятора вызывает движение мотора в противоположную сторону.

Второй двигатель линейный

. В нём происходит не вращение, а линейное перемещение.

Он сделан из AAA аккумулятора, двух кубических неодимовых магнитов 8* 8*

8 мм и скрученной медной проволоки, образующей как бы туннель диаметром 12 мм. Но лучше использовать круглые магниты.

Проволока обязательно должна быть без изоляции! Её диаметр 0,5 мм. Диаметр маркера, на который она накручивалась — 11 мм. Направление движения зависит от вида намотки (по часовой стрелке, против часовой стрелки) и внешних полюсов магнитов. Магниты к аккумулятору нужно подносить одноимёнными полюсами, соответственно, внешние полюса всегда тоже одноимённые. Дальше видео работы.

На следующем видео перемещение аккумулятора с неодимовыми магнитами в растянутой пружине (примерно 5 мм между витками).

Можно сделать круговую пружину, тогда «электричка» будет перемещаться без остановки по кругу.

На канале есть много других статей, которые Вы могли не видеть. Все они доступны по ссылке: https://zen.yandex.ru/id/5c50c2abee8f3100ade4748d

Если информация понравилась, ставьте лайк и поделитесь в соцсетях. Также буду рад комментариям!

Делаем самодельный ДВС

Мотор своими руками также можно сделать на жидком топливе. При этом не потребуется сложное оборудование и профессиональный инструментарий. Необходима плунжерная пара, которую можно взять из тракторного или автомобильного топливного насоса. Цилиндр плунжерной втулки создается путем обрезки утолщенного элемента шлефа. Затем следует проделать отверстия для выхлопного и перепускного окна, припаять пару гаек в верхней части, предназначенных для свечей зажигания. Тип элементов – М-6. Поршень вырезается из плунжера.

Самодельный дизель-двигатель потребует установки картера. Он делается из жести с припаянными подшипниками. Дополнительную прочность позволит создать ткань, покрытая эпоксидной смолой, которой покрывается элемент.

Коленчатый вал собирается из утолщенной шайбы с парой отверстий. В одно из них необходимо запрессовать вал, а второе крайнее гнездо служит для монтажа шпильки с шатуном. Операция также производится методом прессовки.

Правила эксплуатации автомобилей с паровым двигателем

Паровая установка может напрямую соединяться с приводным устройством трансмиссии машины, и с началом ее работы машина приходит в движение. Но с целью повышения кпд специалисты рекомендуют использовать механику сцепления. Это удобно при буксировочных работах и разных проверочных действиях.

В процессе движения механик, учитывая обстановку, может изменить скорость, манипулируя мощностью парового поршня. Это можно выполнить, дросселируя пар клапаном, или изменять подачу пара кулисным устройством. На практике лучше использовать первый вариант, так как действия напоминают работу педалью газа, но более экономичный способ – задействование кулисного механизма.

Читайте также:  Мощность двигателя 190 квт

Для непродолжительных остановок водитель притормаживает и кулисой останавливает работу агрегата. Для длительной стоянки отключается электрическая схема, обесточивающая воздуходувку и топливный насос.

Завершающие работы по сборке самодельного дизельного мотора

Ниже приведен порядок сборки катушки зажигания:

Альтернативой мотору с системой ДВС может служить бесконтактный мотор замкнутого типа, устройство и принцип работы которого представляют систему обратного обмена газов. Он устроен из двухсекционной камеры, поршня, коленвала, передаточной коробки, системы зажигания. Зная, как сделать двигатель своими руками, вы можете существенно сэкономить и получить в хозяйстве нужную и полезную вещь.

Преимущества машины

Аппарат отличается способностью работать практически без ограничений, возможны перегрузки, имеется большой диапазон регулировки мощностных показателей. Следует добавить, что во время любой остановки паровой двигатель перестает работать, чего нельзя сказать про мотор.

В конструкции нет необходимости устанавливать коробку переключения скоростей, страртерное устройство, фильтр для очистки воздуха, карбюратор, турбонаддув. Кроме этого, система зажигания в упрощенном варианте, свеча только одна.

В завершении можно добавить, что производство таких машин и их эксплуатация будут обходиться дешевле, чем автомобили с двигателем внутреннего сгорания, так как топливо будет недорогим, материалы, применяемые в производстве – самыми дешевыми.

Источник

Самодельный двигатель: назначение, устройство и принцип работы. Как сделать двигатель

У каждого начинающего или же опытного рыбака рано или поздно возникает желание заменить обыкновенную лодку на моторную. Покупка такого важного элемента, как мотор, является достаточно серьезной, поэтому не каждый мужчина сможет приобрести для себя подобную вещь. Оказывается, самодельный мотор достаточно просто сделать собственными руками из подручных приспособлений, имеющихся в наличии, но тех, которые уже не функционируют. Лодочный мотор своими руками по функциональности ничем не отличается от покупного, помимо ручного изготовления. Чтобы изготовить самостоятельно подобное изобретение нужно рассмотреть особенности и прочие важные нюансы, которые помогут в этом непростом деле.

Типы моторов

Самодельный двигатель может иметь несколько конфигураций. Среди них:

Привод с постоянным магнитом оборудуется основным элементом в роторной части. Функционирование таких приборов основано на принципе притяжения или отталкивания между статором и ротором приспособления. Такой шаговый электродвигатель оснащен роторной частью из железа. Принцип его работы заключается на фундаментальной основе, согласно которой, предельно допустимое отталкивание производится с минимальным зазором. Это способствует притяжению точек ротора к полюсам статора. Комбинированные устройства сочетают в себе оба параметра.

Еще один вариант – это двухфазные моторы шагового типа. Прибор представляет собой простую конструкцию, может иметь два типа обмотки, легко устанавливается в необходимом месте.

Водометные типы двигателей и их преимущества

Огромной популярностью начали пользоваться так называемые водометные двигатели. В первую очередь это связано с их функциональностью. Для изготовления подобного водомета необходимо иметь двигатель совершенно любого образца и модели. При наличии возможности, можно подобрать такие варианты двигателей как Ветерок 8, Lifan, Дружба, Урал, Ханкай 6, Ямаха 5 и т.д. Независимо от того, какой вид станет основой для будущего мотора, он будет отлично справляться с поставленными перед ним задачами.

Ключевым преимуществом подобных двигателей выступает то, что у них нет незащищенных вращающихся составляющих, находящихся в воде. Поэтому его относят к категории наиболее безопасных. Работа такого мотора не нарушается под воздействием сторонних предметов, одними из которых могут выступать подводные водоросли. Наиболее подходящими водометы будут для таких мест:

Можно с уверенностью сказать, что водометные моторы могут стать хорошей заменой для так называемого подвесного мотора, так как этот вид двигателей позволяет пройти без препятствий лодке там, где не сможет этого сделать прочий вариант мотора. Не менее важной особенностью водометного двигателя выступает то, что в заборной трубке имеется миниатюрная решетка, не позволяющая проникать вовнутрь всевозможным посторонним элементам. Единственное, чего можно ожидать, это попадание обыкновенного речного песка, но он не сможет привести к серьезным аварийным ситуациям.

Монополярные модификации

Самодельный двигатель этого типа состоит из единой обмотки и центрального магнитного крана, влияющего на все фазы. Каждый отсек обмотки активируется для обеспечения определенного магнитного поля. Так как в подобной схеме полюс в состоянии функционировать без дополнительного переключения, коммутация пути и направления тока имеет элементарное устройство. Для стандартного мотора со средней мощностью хватает одного транзистора, предусмотренного в оснащении каждой обмотки. Типичная схема двухфазного двигателя предполагает шесть проводов на выходном сигнале и три аналогичных элемента на фазе.

Микроконтроллер агрегата может использоваться для активизации транзистора в автоматически определенной последовательности. При этом обмотки подключаются посредством соединения выходных проводов и постоянного магнита. При взаимодействии клемм катушки вал блокируется для проворачивания. Показатель сопротивления между общим проводом и торцовой частью катушки пропорционален аналогичному аспекту между торцами проводки. В связи с этим длина общего провода в два раза больше, чем соединительная половина катушки.

Мотор-генератор своими руками (опыты, видео, принцип работы)

Мотор-генератор своими руками (опыты, видео, принцип работы)

Изобретение относится к области электротехники и электроэнергетики, в частности к способам и оборудованию для генерирования электрической энергии, и может быть использовано в автономных системах электроснабжения, в автоматике и бытовой технике, на авиационном, морском и автомобильном транспорте.

За счет нестандартного способа генерации, и оригинальной конструкции мотора-генератора, режимы генератора и электромотора, объединены в одном процессе, и неразрывно связаны. В результате чего, при подключении нагрузки, взаимодействие магнитных полей статора и ротора образует вращающий момент, который по направлению совпадает с моментом, создаваемым внешним приводом. Другими словами, при увеличении мощности потребляемой нагрузкой генератора, ротор мотора-генератора начинает ускоряться, и соответственно понижается мощность, потребляемая внешним приводом. Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента. Результаты экспериментов, которые привели к изобретению мотора-генератора. Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше, чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента. Эта информация подтолкнула нас на проведение ряда экспериментов с кольцевой обмоткой, результаты которых мы покажем на этой странице. Для экспериментов, на тороидальный сердечник, были намотаны 24шт., не зависимые обмотки, с одинаковым количеством витков.


1) Вначале вес обмотки были включены последовательно, выводы на нагрузку расположены диаметрально. В центре обмотки был расположен постоянный магнит с возможностью вращения. После того как магнит с помощью привода приводился в движение, подключалась нагрузка и лазерным тахометром измерялись обороты привода. Как и следовало ожидать, обороты приводного двигателя начинали падать. Чем большую мощность потребляла нагрузка, тем сильнее падали обороты.

Читайте также:  Двухлитровый двигатель на кадди

2) Для лучшего понимания процессов происходящих в обмотке, вместо нагрузки был подключен миллиамперметр постоянного тока. При медленном вращении магнита, можно наблюдать, какая полярность и величина выходного сигнала, в данном положении магнита.


При подключении нагрузки, привод начал набирать обороты!


Другими словами, при взаимодействии полюсов магнита, и полюсов образующихся в обмотке с магнитопроводом, при прохождении через обмотку тока, появился вращающий момент, направленный по ходу вращающего момента созданного приводным двигателем.


Рисунок 1, идет сильное торможение привода при подключении нагрузки. Рисунок 2, при подключении нагрузки привод начинает ускоряться. 5) Что бы понять что происходит, мы решили создать карту магнитных полюсов, которые появляются в обмотках при прохождении через них тока. Для этого была проведена серия экспериментов. Обмотки подключались в разных вариантах, а на концы обмоток подавались импульсы постоянного тока. При этом на пружине был закреплен постоянный магнит, и по очереди располагался рядом с каждой из 24 обмоток.


По реакции магнита (отталкивался он или притягивался) была составлена карта проявляющихся полюсов.


Из рисунков видно, как проявлялись магнитные полюсы в обмотках, при различном включении (желтые прямоугольники на рисунках, это нейтральная зона магнитного поля). При смене полярности импульса, полюсы как и положено менялись на противоположные, по этому разные варианты включения обмоток, нарисованы при одной полярности питания. 6) Па первый взгляд, результаты на рисунках 1 и 5 идентичны.


При более подробном анализе, стало ясно, что распределение полюсов по окружности и «размер» нейтральной зоны довольно сильно отличаются. Сила с которой магнит притягивался или отталкивался от обмоток и магнитопровода показана градиентной заливкой полюсов.


7) При сопоставлении данных экспериментов описанных в пунктах 1 и 4, кроме кардинальной разницы в реакции привода на подключение нагрузки, и существенной разницы в «параметрах» магнитных полюсов, были выявлены и другие отличия. При проведении обоих экспериментов, параллельно нагрузке был включен вольтметр, а последовательно с нагрузкой включался амперметр. Если показания приборов из первого эксперимента (пункт 1), взять за 1, то во втором эксперименте (пункт 4), показание вольтметра так же было равно 1. По показания амперметра составляло 0,005 от результатов первого эксперимента. Исходя из изложенного в предыдущем пункте, логично предположить, если в незадействованной части магнитопровода, сделать немагнитный (воздушный) зазор, то сила тока в обмотке должна увеличиться.


После того как был сделан воздушный зазор, магнит снова подключили к приводному двигателю, и раскрутили на максимальные обороты. Сила тока действительно возросла в несколько раз, и стала составлять примерно 0,5 от результатов эксперимента по пункту 1, но при этом появился тормозной момент на привод. 9) Способом, который описан в пункте 5, была составлена карта полюсов данной конструкции.


10) Сопоставим два варианта


Не трудно предположить, если увеличить воздушный зазор в магнитопроводе, геометрическое расположение магнитных полюсов по рисунку 2, должно приблизиться к такому расположению как в рисунке 1. А это в свою очередь, должно привести к эффекту ускорения привода, который описан в пункте 4 (при подключении нагрузки, вместо торможения, создается добавочный момент к вращающему моменту привода). 11) После того как зазор в магнитопроводс был увеличен до максимума (до краев обмотки), при подключении нагрузки вместо торможения, привод снова начал набирать обороты. При этом карта полюсов обмотки с магнитопроводом выглядит так:


На основе предложенного принципа генерации электроэнергии, можно конструировать генераторы переменного тока, которые при повышении электрической мощности в нагрузке, не требуют повышения механической мощности привода. Принцип работы Мотора Генератора. Согласно явлению электромагнитной индукции при изменении магнитного потока проходящего через замкнутый контур, в контуре возникает ЭДС. Согласно правилу Ленца: Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. При этом не имеет значения, как именно магнитный поток, движется по отношению к контуру (Рис. 1-3).


Способ возбуждения ЭДС в нашем моторе-генераторе аналогичен рисунку 3. Он позволяет использовать правило Ленца для увеличения вращающего момента на роторе (индукторе).

1) Обмотка статора 2) Магнитопровод статора 3) Индуктор (ротор) 4) Нагрузка 5) Направление вращения ротора 6) Центральная линия магнитного поля полюсов индуктора При включении внешнего привода, ротор (индуктор) начинает вращаться. При пересечении начала обмотки магнитным потоком одного из полюсов индуктора в обмотке индуцируется ЭДС. При подключении нагрузки, в обмотке начинает течь ток и полюса возникшего в обмотках магнитного поля согласно правилу Э. X. Ленца направлены на встречу возбудившего их магнитного потока. Так как обмотка с сердечником расположена по дуге окружности, то магнитное поле ротора, движется вдоль витков (дуги окружности) обмотки. При этом в начале обмотки согласно правилу Ленца, возникает полюс одинаковый с полюсом индуктора, а на другом конце ротивоположный. Так как одноименные полюса отталкиваются, а противоположные притягиваются, индуктор стремится принять положение, которое соответствует действию этих сил, что и создает добавочный момент, направленный по ходу вращения ротора. Максимальная магнитная индукция в обмотке достигается в момент, когда центральная линия полюса индуктора находится напротив середины обмотки. При дальнейшем движении индуктора, магнитная индукция обмотки уменьшается, и в момент выхода центральной линии полюса индуктора за пределы обмотки, равна нулю. В этот же момент, начало обмотки начинает пересекать магнитное поле второго полюса индуктора, и согласно правилам, описанным выше, край обмотки от которого начинает отдаляться первый полюс начинает его отталкивать с нарастающей силой.


Рисунки: 1) Нулевая точка, полюсы индуктора (ротора) симметрично направлены на разные края обмотки в обмотке ЭДС=0. 2) Центральная линия северного полюса магнита (ротора) пересекла начало обмотки, в обмотке появилась ЭДС, и соответственно проявился магнитный полюс одинаковый с полюсом возбудителя (ротора). 3) Полюс ротора находится в центре обмотки, и в обмотке максимальное значение ЭДС. 4) Полюс приближается к концу обмотки и ЭДС снижается до минимума. 5) Следующая нулевая точка. 6) Центральная линия южного полюса входит в обмотку и цикл повторяется (7;8;1).

Видео-ролик первого эксперимента:

Комментарии к ролику: Motor-Generator, Experiment 1.

Источник

Ответы на популярные вопросы