Как найти наддув двигателя

Виды наддува двигателя

Задача повышения мощностных характеристик силового агрегата была актуальна всегда. Методов улучшения мощности мотора есть довольно много, к примеру, возможно увеличить габаритные размеры цилиндров, численность и количество оборотов мотора. Однако все вышеприведенные методы приводят к существенному увеличению габаритных размеров и веса силового агрегата, а также повышению нагрузки на его конструктивные элементы.

Содержание:

Существует гораздо эффективнее метод улучшения мощностных характеристик мотора. Сама идея довольно проста: чем больше удастся «затолкать» воздуха в цилиндр силового агрегата, тем больше возможно сжечь горючего и как следствие получить повышение мощности мотора. Данный метод именуется – наддув двигателя. Главным его преимуществом выступает тот факт, что габаритные размеры и вес мотора остается прежними, но его мощностные характеристики будут более высокими.

В обычном силовом агрегате горючая смесь подается в цилиндры, при давлении, которое значительно меньше атмосферного. При этом нужно учитывать наличие «препятствий» для прохождения горючей смеси в виде дроссельной заслонки, воздушного фильтрующего элемента, поворотов и шероховатой поверхности стенок каналов. Выполняя наддув двигателя давление, под которым подается горючее значительно повышается, что позволяет получить высокую мощность мотора.

Применение механической схемы

Механические нагнетатели воздуха с целью увеличения мощности силового агрегата использовались на транспортных средствах еще в 30-х годах. Тогда такие устройства именовались компрессорами. В настоящее время их преимущественно называют турбокомпрессорами, о которых, собственно пойдет речь дальше. Стоит отметить что механических конструкций такого плана достаточно много, но несмотря на это разработка новых модификаций актуальна и сейчас.

На выше представленном рисунке показаны нагнетатели воздуха со стандартной конструкцией механического типа. Такие турбокомпрессоры отличаются простой конструкционной схемой и не сложны в эксплуатации.

Однако существуют и не совсем обычные нагнетатели воздуха, разработанные различными компаниями. Одним из них является – волновой нагнетатель воздуха «Comprex» разработанный компанией Asea-Brown-Boweri. Ротор данного турбокомпрессора обладает аксиально размещенными ячейками. При вращательных движениях ротора в камеры попадает воздух, после этого она подходит к отверстию в корпусе и через него в ячейку попадают горячие отработанные газы из силового агрегата. Взаимодействуя с холодным воздухом образовывается волна давления, которая движется с высокой скоростью, за счет чего воздух вытесняется в отверстие выпускного трубопровода, к которому камера за этот промежуток времени успевает подойти. Так как ротор все время крутится отработанные газы в данное отверстие не попадают, а выходят по ходу движения ротора в следующее. Такие нагнетатели применялись многими производителями автомобильных транспортных средств, к примеру, Mazda их применяет на некоторых моделях машин с 1987 года.

Еще одной интересной разработкой выступает спиральный нагнетатель – G40. Впервые она были использована немецким производителем автомобилей Volkswagen в 1985 году.

В 1988 году появилась новая модификация спирального нагнетателя воздуха G-60, которая обладала более высокой мощностью и применялась на автомобилях Corrado и Passat.

Конструкционно такие нагнетатели состоят из двух спиралей, первая из которых стационарна и выступает в качестве части корпуса. Вторая спираль играет роль вытеснителя и размещена между двумя витками первой. Данная спираль крепится на валу. Вал в действие приводится за счет ременной передачи силового агрегата с отношением одного к двум.

Принцип работы такой конструкции довольно прост и заключается в следующем: во время вращения вала спираль находящиеся внутри корпуса осуществляет колебательные движения и между ними образовываются серповидные полости, движущееся к центру и тем самым перемещают воздух с периферии в мотор под низким давлением. При этом количество подаваемого сжатого воздуха напрямую зависит от частоты вращения вала мотора.

Такая схема нагнетателя имеет два важных преимущества: достаточно высокий КПД и износоустойчивость (за счет отсутствия трущихся конструкционных элементов).

Применение турбокомпрессоров

В настоящее время с целью улучшения мощностных характеристик силового агрегата используют не механические нагнетатели воздуха, а турбокомпрессоры. Такие устройства гораздо проще в производстве, что окупает ряд недостатков, которые им присущи.

Современные турбокомпрессоры от выше приведенных схем прежде всего отличаются по своим конструкционным особенностям и принципу работы привода. В данном случае применяется ротор с лопатками, то есть турбина, вращаемая за счет воздействия потока отработанных газов силового агрегата. Турбина вращает вмонтированный на том же валу компрессор, представленный в виде колеса, оснащенного лопатками.

Такой принцип действия привода, определяет главные недостатки газового компрессора. Следует отметить, что в данном случае частота вращения мотора довольно низкая, а значит и количество отработанных газов тоже небольшое, что негативно влияет на производительность работы турбокомпрессора.

Помимо двигатель с установленным турбокомпрессором, чаще всего имеет так называемую турбояму, то есть замедленный отклик мотора на увеличение количества подаваемого горячего. Водителю при этом нужно резко нажать педаль газа до упора, а силовой агрегат реагирует лишь спустя определенное время. Объяснение у такого явления довольно простое – необходимо определенное количество времени на раскрутку турбины, которая отвечает за вращение компрессора.

Максимально нивелировать выше наведенные недостатки турбокомпрессоров разработчики пытались различными методами. И в первую очередь была уменьшена масса конструктивных вращающихся элементов компрессора и самой турбины. Ротор компрессора, применяемого в настоящее время стал настолько малогабаритным, что вмещается на ладони. К тому же легкий по массе ротор значительно повышает эффективность работы компрессора даже при низких оборотах силового агрегата.

Читайте также:  Двигатель змз 523400 характеристики

Однако уменьшение размеров конструктивных деталей, не единственный метод улучшения эффективности работы газового компрессора. Сегодня для их изготовления применяются новые материалы, которые помогают снизить массу элементов ротора, что позволяет улучшить его работу. К примеру, довольно часто для этих целей используют спичечный карбид кремния, который обладает устойчивостью к воздействию высоких температур и при этом имеет легкий вес.

То есть с уверенностью можно сказать, что современные турбокомпрессоры лишены многих недостатков предыдущих моделей подобных устройств. Благодаря чему такие установки с успехом используются на автомобильных транспортных средствах от разных производителей. Выбор турбо нагнетателей воздуха должен осуществляться исходя из изначальной мощности машины, а также финансовых возможностей владельца автомобиля. Установка таких агрегатов строго должна вестись на СТО либо автомастерских.

Что лучше выбрать механический нагнетатель воздуха или турбокомпрессор

Увеличение скоростных показателей своего автомобиля – весьма актуальный вопрос для многих владельцев транспортных средств. Сегодня данную задачу можно решить многими способами, но наибольшим спросом пользуется установка механического нагнетателя воздуха или турбо компрессора. Так какой из этих двух вариантов лучший? На данный вопрос попробуем ответит в данной статье.

Для этой цели изначально нужно разобраться с принципом работы механического и газового компрессора.

Принцип и особенности работы механической схемы

Таких устройств существует несколько видов:

Поскольку механические нагнетатели воздуха функционируют за счет коленчатого вала мотора посредством дополнительного привода, обороты компрессора напрямую зависят от оборотов силового агрегата.

Особенности работы турбокомпрессора

Такие нагнетатели воздуха функционируют за счет энергии, полученной от выбросов отработанных газов. По своей сути турбокомпрессор – сочетание центробежного компрессора и самой турбины (колеса, оснащенного лопатками).

Принцип его действия заключается в следующем: отработанные газы с большой скоростью вращают турбину, которая вмонтирована на валу. На другом конце вала вмонтирован центробежный насос, основная задача которого заключается в нагнетании большого количества воздуха в цилиндры.

В современных компрессорах с целью охлаждения воздуха, который подается в турбину, применяют интеркулер.

Недостатки и преимущества механического и газового компрессора

Турбокомпрессор прекрасно подходит для применения с целью обогащения кислородом топлива. Однако и такие схемы обладают своими недостатками:

Стоит отметить, что в настоящее время можно купить турбокомпрессор, который будет отлично справляться со своей основной задачей как на низких, так и на высоких оборотах силового агрегата. Однако их цена достаточно высокая, как на само оборудование, так и на обслуживание. Но несмотря на это многие владельцы отдают предпочтение именно турбокомпрессорам.

Механические нагнетатели воздуха в свою очередь проще в монтаже и обслуживании. Работают такие устройства как на низких, так и на высоких оборотах. Кроме этого они требуют слишком больших временных и финансовых затрат при восстановлении и ремонте. Это объясняется тем, что в отличие от турбокомпрессора, механический нагнетатель является независимым устройством.

Турбина помимо своей дороговизны и сложности в установке, также довольно требовательна к качеству и техническим характеристикам используемой топливной смеси.

У механических нагнетателей воздуха есть существенная проблема – достаточно большой расход горючего, при относительно невысоком коэффициенте полезного действия. Но при этом они проще в конструкционном плане и в обслуживании.

При этом выбор той или иной установки зависит только от водителя и его пожеланий, а также изначальных характеристик машины.

Видео

Основной автор сайта и основатель нескольких автомобильных интернет-проектов

Источник

Виды наддува двигателей внутреннего сгорания

Задача повышения мощности и крутящего момента двигателя была актуальна всегда. Самое простое решение — увеличить рабочий объем: чем больше сгорает топлива, тем выше мощность. Однако при этом существенно увеличиваются габариты и масса конструкции.

Альтернативный подход — оставить рабочий объем двигателя прежним, но подавать в единицу времени больше топлива. Увеличить подачу бензина несложно, особенно, в системах впрыска. Но при этом для сохранения состава топливной смеси необходимо пропорционально увеличить и количество подаваемого в двигатель воздуха. Возможности двигателя самостоятельно всасывать воздух ограничены, поэтому не обойтись без специального устройства, повышающего давление и, следовательно, количество воздуха на впуске. Эти устройства обычно называют нагнетателями или компрессорами.

Механический нагнетатель

Механические нагнетатели применялись в автомобильных двигателях еще в 30-е годы, тогда их чаще всего называли компрессорами. Сейчас этот термин обычно относят к турбокомпрессорам, о которых речь пойдет ниже. Конструкций механических нагнетателей довольно много, и интерес к ним разработчики проявляют до сих пор. На рисунках 1-4 представлены схемы некоторых устройств, принцип работы которых не требует дополнительных пояснений.

Нагнетатель Comprex уже опробован несколькими автомобильными производителями, а Mazda использует его на одном из своих серийных двигателей с 1987 года.

При вращении вала внутренняя спираль совершает колебательные движения и между неподвижной (корпус ) и обегающей (вытеснитель ) спиралями образуются серпообразные полости, которые движутся к центру, перемещая воздух от периферии и подавая его в двигатель под небольшим давлением. Количество перемещаемого воздуха зависит от частоты вращения коленчатого вала двигателя.

Система имеет сравнительно высокий (около 65%) КПД. Трущихся частей почти нет, поэтому износ деталей незначителен. Установленный на двигателе Polo нагнетатель G40 (40 и 60 в маркировке нагнетателей Volkswagen — это ширина спиральных камер в миллиметрах) имеет внутреннюю степень сжатия 1,0; максимальное давление наддува составляет 0,72 бар. При номинальной частоте вращения ротора 10200 об./мин. за один оборот подается 566 см куб. воздуха, т. е. почти 6000 л/мин.

Читайте также:  Компьютерная диагностика двигателя suzuki

Входящий в схему охладитель наддувочного воздуха (Intercooler ) является почти непременной составной частью всех, не только механических, систем наддува. При сжимании воздух, как известно, нагревается, а его плотность и, соответственно, количество кислорода в единице объема уменьшаются. Больше кислорода — лучше сгорание и выше мощность. Поэтому перед подачей в двигатель сжатый нагнетателем воздух проходит через охладитель, где его температура снижается.

Преимущества спирального нагнетателя, как и большинства компрессоров с механическим приводом: достаточно большой крутящий момент и повышенная мощность двигателя при низких оборотах, быстрая, практически мгновенная реакция на нажатие педали газа. Недостатки: относительная сложность и нетехнологичность конструкции, большие потери в приводе.

Турбокомпрессор

Более широко на современных автомобильных двигателях применяются турбокомпрессоры. Они более технологичны в изготовлении, что окупает ряд присущих им недостатков.

Выбранная схема привода (газовая вместо механической) определяет основные недостатки турбокомпрессора. При низкой частоте вращения двигателя количество отработавших газов невелико, соответственно, эффективность работы компрессора невысока. Кроме того, турбонаддувный двигатель, как правило, имеет т. н. «турбояму » — замедленный отклик на увеличение подачи топлива. Вам нужно резко ускориться — вдавливаете педаль газа в пол, а двигатель некоторое время думает и лишь потом подхватывает. Объяснение простое — требуется время на раскрутку турбины, которая вращает компрессор. На рис. 9 показана реакция нагнетателей различных типов на увеличение числа оборотов двигателя. Приведенные кривые относятся к дизелю, но их характер сохраняется и для бензинового двигателя. Хорошо видно, что самую медленную реакцию имеет турбокомпрессор, волновой нагнетатель реагирует быстрее, механический нагнетатель срабатывает практически мгновенно.

Избавиться от указанных недостатков конструкторы пытаются разными способами. В первую очередь, снижением массы вращающихся деталей турбины и компрессора. Ротор современного турбокомпрессора настолько мал, что легко умещается на ладони. Легкий ротор повышает эффективность компрессора при низких оборотах двигателя: например, у 2,0 л турбодвигателя SAAB 9000 уже при 1500 об./мин. увеличение крутящего момента за счет наддува составляет 20%. Легкий ротор, кроме того, обладает меньшей инерционностью, что позволяет турбокомпрессору быстрее раскручиваться при нажатии педали газа и уменьшает «турбояму ».

Снижение массы достигается не только конструкцией ротора, но и выбором для него соответствующих материалов. Поиск новых материалов для турбин ведется многими фирмами. Основная сложность — высокая температура отработавших газов. Преуспели больше всего в этой области, пожалуй, японцы — они уже давно занимаются керамикой для двигателей внутреннего сгорания. Монолитная турбина, изготовленная из спеченного карбида кремния, при той же механической прочности весит в 3 раза меньше обычной и, соответственно, обладает гораздо меньшей инерцией. Кроме того, в случае разрыва ротора разлетающиеся осколки будут много легче — это дает возможность сделать корпус компрессора более тонким и компактным. А недавно конструкторам Nissan впервые в мировой практике удалось создать крыльчатку нагнетателя из пластмассы. Из какой — неизвестно, но говорят, получилась очень легкая.

Избавиться от недостатков турбокомпрессора позволяет не только уменьшение инерционности ротора, но и применение дополнительных, иногда довольно сложных схем управления давлением наддува. Основные задачи при этом — уменьшение давления при высоких оборотах двигателя и повышение его при низких. Одна задача решается довольно легко: избыточное давление наддува на высоких частотах вращения уменьшается, как правило, с помощью перепускного клапана.

Другая задача сложнее. Полностью решить все проблемы можно было бы использованием турбины с изменяемой геометрией, например, с подвижными (поворотными ) лопатками, параметры которой можно менять в широких пределах. Такие турбины широко применяются в авиации и других областях техники. Но в крошечном роторе автомобильного компрессора механизм поворота лопаток разместить трудно.

Один из упрощенных способов — применение регулятора скорости потока отработавших газов на входе в турбину. В турбокомпрессоре Garrett VAT 25, который более подробно будет рассмотрен ниже, для этого используется подвижная заслонка.

Схема управления давлением наддува 2,0 и 2,3 литровых двигателей SAAB 9000 показана на рис. 10. Называется она APC — Automatic Performance Control. Система APC во всех режимах работы двигателя поддерживает давление наддува на максимально допустимом уровне, не доводя двигатель до детонации. Для этого использован датчик (knock sensor), по сигналу которого при возникновении детонации блок управления открывает установленный в турбине перепускной клапан, и часть отработавших газов направляется в обход турбинного колеса, что снижает давление наддува и устраняет детонацию. Помимо этого датчика в систему APC входят также и другие, измеряющие частоту вращения двигателя, нагрузку, температуру и октановое число используемого топлива — этими параметрами определяется порог детонации.

Использование APC позволило не только повысить степень сжатия 2,0 л двигателя до 9, но и сделало возможным использование топлива с низким октановым числом — до 91.

Топливная экономичность

Конечно, и с турбодвигателем можно ехать относительно экономично, но тогда зачем он нужен? Поэтому сегодня конструкторы пытаются решить непростую задачу: уменьшить расход топлива при сохранении высокой мощности. Попробуем рассмотреть разные подходы к этой проблеме, предложенные, например, инженерами Audi и Peugeot.

Читайте также:  Когда выпущена приора рестайлинг

Одним из путей повышения экономичности двигателя, как известно, является увеличение степени сжатия. Но в двигателях с наддувом есть ограничение: наддув увеличивает компрессию, что приводит к возникновению детонации, особенно на высоких оборотах. Поэтому степень сжатия приходится искусственно снижать: в современном атмосферном двигателе она составляет около 10, а в двигателе с наддувом обычно не превышает 8.

Конструкторам Audi удалось в определенной степени это ограничение преодолеть: в 5-цилиндровом 20-клапанном двигателе Audi S2 и Audi S4 объемом 2,2 л и мощностью 230 л. с. степень сжатия доведена до 9,3 — это для турбомотора необычно много. Результат: средний расход топлива при 90 км/ч — 7,5 л, в городе — 14 л/100 км. Двигатель пришел со спортивной Audi 200. Созданный на этой же основе мотор Avant RS2 также имеет довольно высокую степень сжатия — 9, но при таком же объеме развивает мощность 315 л. с. (за счет изменения параметров наддува). В то же время расход топлива в городе составляет лишь 14,5 л/100 км.

Упоминавшийся выше турбированный 4-цилиндровый двигатель нового SAAB 9000 объемом 2,0 л тоже имеет степень сжатия 9. Мощность поменьше: 165 л. с., но и расход топлива на трассе менее 7, а в городе — около 12 л/100 км.

Сравните эти параметры, например, с данными для Porsche 968 Turbo S. Спортивная машина, на экономию топлива особого внимания не обращали. Рабочий объем 3 л, 4 цилиндра 2 клапана/цилиндр, степень сжатия 8, мощность 305 л. с., расход топлива в городе — не менее 18 л/100 км.

Получилось, в целом, неплохо. Своего максимального крутящего момента 288 Нм двигатель Peugeot достигает при 2600 об./мин., и это значение сохраняется до 4500 об./мин. При этом 90% величины момента расположены в диапазоне 2300-5200 об./мин. При объеме 2,0 литра двигатель развивает мощность 200 л. с. (5000 об./мин.), а расход топлива в городе составляет менее 12 л/100 км.

Overboost

Как правило, турбонаддувные двигатели имеют устройство Overboost, срабатывающее при резком нажатии на педаль газа и дополнительно повышающее давление наддува и максимальный крутящий момент двигателя (примерно на 10%). Это необходимо при резких ускорениях, например, при обгоне.

На Audi с компрессором К24 включение этого режима достигается, в общем, традиционно: при резком и полном открытии дроссельной заслонки срабатывает электронный блок управления, который быстро закрывает регулировочный клапан давления наддува. Весь поток отработавших газов направляется через турбину, давление наддува дополнительно увеличивается — Overboost. В этом режиме уже при 2100 об./мин. крутящий момент двигателя достигает 380 Нм.

Повышенный крутящий момент сохраняется в течение ограниченного времени: у Audi — 16 секунд, у Peugeot — 45 секунд, что почти идеально для выполнения обгонов. Чтобы не уродовать двигатель, режим Overboost не действует, если частота вращение двигателя превышает 6000 об./мин. (Audi ) или если включена 1-я передача (Peugeot ).

Во что обходится наддув

Бесплатным, как известно, бывает только ветер в камышах. За повышение мощности двигателей с наддувом приходится платить. И не только увеличением расхода топлива. Повышаются требования к его качеству — для большинства турбированных двигателей требуются бензины с октановым числом 96-98. Несмотря на то, что поршни, кольца, головки и шатуны усилены, ресурс двигателя ощутимо снижается, тем в большей степени, чем выше давление наддува. Можно считать, что в среднем ресурс двигателя с турбокомпрессором не превышает 100 тыс. км, а ресурс самого компрессора составляет около 10 тыс. часов. У механических нагнетателей он выше — около 25 тыс. часов. Для системы смазки турбокомпрессора требуются специальные масла, выдерживающие высокие температуры и частоты вращения более 100 000 об./мин. Температура в турбинной части компрессора доходить до 1000°С, поэтому его подшипники требуют дополнительного водяного охлаждения. Все изложенное для потребителя выливается в довольно значительное увеличение стоимости автомобиля и его обслуживания.

Для бензиновых двигателей массовых моделей наддув вряд ли можно считать удачным способом повышения мощности. Volkswagen, например, в этом году отказался от упоминавшегося выше наддувного двигателя на Polo. Более перспективными, особенно с точки зрения топливной экономичности, видимо, можно считать такие направления, как многоклапанная техника, совершенствование систем впрыска, переобеднение смеси и ее послойное распределение в цилиндрах.

Бензиновые двигатели с турбонаддувом — это, пожалуй, удел дорогих, со спортивным характером автомобилей. Maserati, например, может позволить себе выпускать все двигатели с системой наддува, да еще не с одним, а с двумя турбокомпрессорами — на V-образных двигателях. Такую конструкцию называют Twin Turbo. Запомнить легко — как Twin bed в гостинице. Иногда название трансформируется в Biturbo, что сути дела не меняет: турбокомпрессоры стоят параллельно и каждый обслуживает свою секцию цилиндров.

Такой автомобиль, как правило, могут приобрести немногие. Правда, при нынешней российской налоговой политике, когда приходится платить пошлину с объема двигателя, некоторые могут предпочесть турбированный вариант, благо они все еще имеются в каталогах большинства производителей. Дело вкуса. И денег. Кстати Mercedes-Benz и BMW, продукция которых у нас столь популярна, не имеют сегодня ни одного серийного бензинового турбодвигателя.

С экономической, экологической, да и многих других точек зрения весьма привлекательно выглядят турбированные дизели.

Источник

Ответы на популярные вопросы