Какие двигатели у торпед

Какие двигатели у торпед

1. Тепловые энергосиловые установки торпед

Конструктивно современная тепловая торпеда состоит из четырех основных соединенных между собой частей: боевого зарядного отделения I, воздушного резервуара (ВР) с зарезервуарной частью II, кормового отделения III и хвостовой части IV с гребными винтами (рис. 1).

Воздушный резервуар с зарезервуарной частью предназначен для размещения энергетических компонентов торпеды. В ВР емкостью 650 л содержится сжатый воздух под давлением 196·10 5 Па (200 кгс/см 2 ), необходимый для образования парогазовой смеси, работы приборов управления движением торпеды и вытеснения энергокомпонентов.

Продолжением ВР служит водяной отсек 3 емкостью 50 л. Вода, находящаяся в отсеке, необходима для охлаждения и образования парогазовой смеси, приводящей главный двигатель в действие, а также для вытеснения керосина из баллона 4.

В отделении парогазогенератора размещены:

двухступенчатый регулятор высокого и низкого давления, служащий для понижения давления воздуха, поступающего из резервуара в ПГГ, водяной отсек и к рулевой машинке гидростатического аппарата;

четверной кран, открывающий пути энергокомпонентов при выстреле;

машинный кран с прибором расстояния, дающий доступ воздуха к регулятору давления и закрывающий доступ к нему при практическом выстреле после прохождения торпедой заданной дистанции.

Рулевая машинка (РМ) является силовым исполнительным механизмом, перекладывающим горизонтальные рули торпеды по командам гидростатического аппарата (ГА).

Кормовое отделение предназначено для размещения прибора курса 8, главной машины 7 и некоторых других агрегатов.

Торпеда снабжена двумя полыми валами, один из которых расположен внутри другого. На конце каждого вала насажен гребной винт 10. Отработавшие газы из главной машины идут по внутреннему пустотелому гребному валу и выбрасываются наружу, оставляя на поверхности воды заметный след. Несмотря на небольшие размеры, главная машина развивает мощность порядка 368 кВт (500 л.с.).

Кормовое отделение торпеды делается герметичным.

Хвостовая часть торпеды состоит из хвостового оперения, двух гребных винтов, горизонтальных и вертикальных рулей. Вращаясь в разные стороны, гребные винты при условии равенства вращающих моментов исключают возможность отклонения торпеды от заданного при выстреле направления.

Рассмотрим общую компоновку тепловых торпед, более подробно остановимся на устройстве и работе их ЭСУ.

Следует отметить, что известные образцы тепловых торпед, в которых в качестве окислителя используется воздух, по основным характеристикам довольно близки между собой, хотя и различаются конструкциями ЭСУ и используемым горючим (нефть, керосин, спирт и т. д.).

Под ЭСУ тепловой торпеды понимают совокупность всех устройств, механизмов, агрегатов и приборов, обеспечивающих прохождение торпедой заданной дистанции с определенной скоростью и поддержание этих величин постоянными с необходимой точностью в соответствии с заданными требованиями.

ЭСУ торпеды состоит из баллонов с энергозапасами, средств подачи энергокомпонентов, парогазогенератора, двигателя с редуктором, гребными винтами, системой выхлопа, а также пускорегулирующей аппаратуры.

Принципиальная схема подачи энергокомпонентов к парогазогенератору ПГГ отечественной тепловой торпеды приведена на рис. 2. Когда торпеда перед боевым выстрелом находится в торпедном аппарате, запирающий клапан 4 и машинный кран 7 закрыты, а воздух из воздушного резервуара поступает только к клапану запирающего крана.

При открывании запирающего клапана 4 воздух из ВР подводится к машинному крану 7. В момент выстрела при движении торпеды в торпедном аппарате под действием выбрасывающей силы, создаваемой давлением сжатого воздуха или пороховых газов, курок торпеды задевает за курковой зацеп аппарата, откидывается назад и открывает машинный кран вместе с четверным краном. Одновременно происходит воспламенение зажигательного патрона 9.

Воздух от машинного крана поступает в полость машинного регулятора 8. Одновременно воздух идет в масленку высокого давления, баллон замедлителя 11 и к прибору курса. Из полости регулятора воздух ответвляется в масленку среднего давления.

После срабатывания замедлителя и опускания масляного золотничка клапан регулятора низкого давления поднимается, и воздух поступает в ПГГ. Одновременно отрегулированный воздух поступает к регулятору высокого давления и в водяной отсек, пройдя при этом четверной кран 6, и, кроме того, проходит в масляный баллон для вытеснения масла к рулевой машинке (РМ) гидростатического аппарата.

При откидывании курка, как отмечалось выше, открывается четверной кран 6, через который вода из водяного отсека 2 поступает в баллон 5 на вытеснение керосина и через фильтр и водяной кран в камеру горения ПГГ.

Керосин, пройдя через фильтр и кран, поступает в форсунку ПГГ на распыление.

Каждый цилиндр снабжен клапаном для предохранения от гидравлического удара, если при пуске главной машины в цилиндрах находится вода. Клапаны регулируются на давление воздуха в цилиндре 39,2·10 5 Па (40 кгс/см 2 ).

Работает главная машина следующим образом. При откидывании курка торпеды парогазогенератор начинает вырабатывать парогазовую смесь, которая поступает к золотникам. Кривошипно-шатунный механизм и механизм газораспределения при сборке согласованы так, что в любом положении кривошипа один из золотников открывает своей внутренней кромкой окно в цилиндр. Парогаз, поступая туда, начинает давить на поршень и передвигает его.

Шток поршня перемещает по направляющим картера ползун с шатуном, что приводит к повороту кривошипов, которые посредством конических шестерен передают вращение на валы главной машины.

Когда поршень находится в переднем положении (передней мертвой точке), окно в цилиндр уже имеет предварительное открытие (линейное опережение), чтобы дать возможность газу своевременно заполнить мертвое пространство и выровнять давление наполнения цилиндра к началу хода поршня.

Дальнейшее открытие окна и впуск газа в цилиндр продолжаются на протяжении 57% хода поршня, после чего окно перекрывается золотником и происходит отсечка впуска. После этого дальнейшее движение поршня приводит к расширению впущенного в цилиндр газа с постепенным падением его давления.

За 13% хода от заднего положения (задней мертвой точки) золотник наружной кромкой открывает окно передней полости. Происходит предварительный выпуск газа из цилиндра в пространство внутри золотника, откуда газ перепускается в картер, а затем по внутреннему валу выходит наружу.

Читайте также:  Индикатор проверь двигатель королла

В процессе обратного движения поршня газ выпускается из цилиндра до тех пор, пока поршень не пройдет 82% своего пути. После этого окно перекроется золотником.

При дальнейшем ходе поршня до передней мертвой точки происходит сжатие газа, и за 0,2% хода поршня окно вновь открывается внутренней кромкой золотника для предварения впуска.

Давление газа в цилиндрах зависит от установленного режима и достигает 26,4·10 5 Па. Средняя температура в цилиндрах за время полного рабочего цикла поршня составляет 500. 550°С. Температура газов, отходящих через внутренний вал после их охлаждения водой в золотниках и в полости картера, равна 80. 90°С.

Для получения парогазовой смеси в ПГГ под давлением подаются воздух, керосин и вода. Вода перед впрыскиванием в пламя горящего керосина подогревается, и подача ее производится навстречу потоку воздуха. Получаемая парогазовая смесь достигает температуры 600. 800°С. ПГГ, увеличивая энергетические запасы, дает возможность повысить мощность главной машины, а, следовательно, и дальность хода торпеды.

Горючее и окислитель поступают через верхнюю часть парогазогенератора и поджигаются специальным запальным устройством (дальше протекает самоподдерживающийся процесс горения).

Воздух в крышку парогазогенератора вводится через калиброванное отверстие диаметром 10 мм, что обеспечивает уменьшение давления в камере парогазогенератора до 9,81·10 4 Па (1 кгс/см 2 ). Такой перепад давления необходим для распыления керосина в ПГГ и подачи в него из водяного отсека воды (рис. 4).

Образовавшийся парогаз поступает в поршневую или турбинную машину и отдает им заключенную в нем энергию.

Следность. Азот воздуха нерастворим в воде и поэтому создает за торпедой хорошо заметный пузырьковый след шириной 1,5. 2 м, что в дневное время становится тактическим недостатком торпеды.

Динамическая неуравновешенность и шумность поршневого двигателя при его работе являются следствием получения большой мощности в очень ограниченном объеме. Шумность демаскирует торпеду и создает помехи акустическим системам самонаведения.

Все это стало серьезным препятствием на пути развития воздушных парогазовых торпед. Так, если с момента появления до первой мировой войны их скорость возросла до 66. 79 км/ч (36. 43 уз), то за время между первой и второй мировыми войнами лишь на 10,5. 16,6 км/ч (7. 9 уз.). В военные и послевоенные годы наметился прогресс в развитии этого оружия: созданы новые топлива, более совершенные конструкции двигателей, разработаны новые принципы движения.

Значительный прогресс в ЭСУ торпед достигнут благодаря применению турбинных двигателей, которые за рубежом впервые стали использовать в американской торпеде Мк 15 в годы второй мировой войны.

Как отмечалось в зарубежной печати, основные преимущества турбинных двигателей перед поршневыми заключаются в том, что установка в целом конструктивно более совершенна, так как ее части совершают только вращательное движение; газовая турбина в одном агрегате может развивать значительно большие мощности.

При работе с двухкомпонентными топливами главное внимание было уделено изысканию эффективных окислителей. В зарубежной литературе подчеркивалось, что удачными оказались перекисно-водородные ЭСУ торпед, которые использовались в течение многих лет. При замене в воздушной тепловой торпеде сжатого воздуха на эквивалентное количество перекиси водорода дальность ее хода удалось повысить в 3 раза.

Тепловые торпеды должны иметь довольно большой запас пресной воды. Особенно ее много требуется для торпед с жидким окислителем.

В результате длительных исследований в США было получено твердое топливо «Отто-I», которое применялось в торпеде Мк 46 мод. 0. Но оно оказалось мало технологичным: плохо регулировалась скорость его горения.

Затем появилось жидкое унитарное топливо «Отто-II». Оно дешевле твердого, а плотность его энергии в три раза больше, чем у самой лучшей из аккумуляторных батарей. «Отто-II» нашло применение в торпедах Мк 46 мод. 1 и Мк 48 мод. 2. Американские специалисты считают, что жидкие унитарные топлива в ближайшие десять лет будут занимать ведущее место.

За рубежом идет поиск рецептур гидрореагирующих топлив на базе алюминия, натрия, лития. Их действие основано на том, что эти металлы в расплавленном состоянии активно взаимодействуют с водой, в результате чего выделяется огромное количество энергии. Больше всего энергии выделяет алюминий, однако, у него высокая температура плавления (660°С). Натрий плавится при температуре 98°С, но выделяемая им энергия во много раз меньше, а интенсивность взаимодействия с водой достаточно спокойна. Поэтому специалисты США в качестве мощного источника энергии для двигателей торпед будущего рассматривают литий.

Однако, по мнению зарубежных специалистов, для окончательного перехода на это топливо необходимо решить ряд технических проблем. Так, надо найти в торпеде место для предварительного нагрева лития до температуры плавления. Чтобы предотвратить отвердевание лития, прежде чем он поступит в камеру сгорания, следует нагревать топливные линии, клапаны, сопла. Наконец, под действием несгоревших частиц и гидроокиси лития, по оценке специалистов, может возникнуть эрозия лопастей турбины.

Ниже в табл. 2 приводятся характеристики некоторых торпедных топлив.


Таблица 2

Одним из перспективных направлений развития торпедных ЭСУ на Западе считается применение реактивного принципа движения. Идея его использования возникла вскоре после появления торпед. В 1879 г. наш соотечественник А. Шпаковский предложил Морскому техническому комитету проект реактивной торпеды. Делались попытки применить реактивный двигатель в последующие годы и за рубежом. Однако реализовать ни один из проектов не удалось из-за несовершенства техники того времени. Дело в том, что плотность воды на три порядка выше плотности воздуха, что требует для придания подводному снаряду достаточной скорости огромных мощностей ЭСУ. Понадобилось около 80 лет, чтобы на практике осуществить реактивный принцип движения под водой в авиационной отечественной реактивной торпеде РАТ-52.

Читайте также:  Киа соренто линейка двигателей

Твердые топлива для реактивных торпед различаются между собой не только составом компонентов, но и формой шашек, и способом горения. В американской подводной ракете диаметром 152 мм использовалась шашка твердого топлива торцевого горения. В ракете диаметром 254 мм стоят шашки медленно горящего топлива с радиальными щелями. Длина шашки 2540 мм, диаметр внутреннего отверстия составляет 1/5 диаметра заряда (рис. 5).

Принципиальная схема и рабочий процесс гидрореактивных двигателей такие же, как и воздушно-реактивных. Сила тяги здесь создается выбросом через сопло воды, которая поступает в двигатель извне. Скорость воде придает газ, генерируемый в двигателе. Для пуска гидрореактивного двигателя необходимо специальное стартовое устройство.

В итальянских гидрореактивных ЭСУ РХ-5 для получения большой энергии использовалось взаимодействие щелочного металла с забортной водой. Итальянская торпеда V-6 с гидрореактивным двигателем напоминает по форме воздушную ракету. Ее длина 7,5 м, диаметр 515 мм, масса 1000 кг, масса ВВ 300 кг. Топливом служит боран (химическое соединение бора с кислородом), обеспечивающий движение торпеды с высокой скоростью в течение 36 с.

Скорости первых реактивных торпед достигали 35 м/с (70 уз). В 50-х годах в американском флоте испытывали реактивную торпеду со скоростью хода 77 м/с (155 уз). В зарубежной печати сообщалось о том, что разрабатываются образцы, движущиеся в кавитационном режиме со скоростью 100. 150 м/с (200. 300 уз). Однако у них пока очень небольшая дальность хода.

В США давно изучается возможность применения в торпеде атомной ЭСУ. Один из рассматриваемых несколько лет назад вариантов газоохлаждаемого реактора имел длину 6100 мм, диаметр 1525 мм, массу 1365 кг и мощность на валу 1472 кВт (2000 л.с.). Предполагается, что продолжительность движения торпеды с этим реактором составит несколько суток. Таким образом, калибр такой торпеды может быть не менее 1525 мм при длине 12 200 мм. Стоимость торпеды несколько миллионов долларов.

Главным достоинством ядерного источника энергии, по мнению зарубежных специалистов, является большая продолжительность работы. Создание ядерной ЭСУ в США считается принципиально возможным, однако отмечается, что использование подобных торпед в морских операциях довольно затруднительно.

Посмотрите на отличный сайт тут, а не в каком другом месте.

Источник

Какие двигатели у торпед

Войти

Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal

Ракеты выбивали пробки, герметизирующие пусковые трубы, вылетали из них и при удачном попадании могли вызвать пожар на неприятельском корабле. Принципиально важно то, что пуск ракет мог производиться как с поверхности воды, так и с небольшой глубины (в пределах одного метра).

Реактивные торпеды Торпеда Монжери (1825 г.)

Реактивная торпеда Девеза. 1—корпус с зарядом ВВ; 2 — ракета-двигатель; 3 — пороховой взрыватель; 4 — стабилизатор

Сзади был размещен длинный ящик, открытый сверху, который сообщался с внутренней полостью трубы при открытой задней крышке. Он предназначался для приема воды из пусковой трубы после выстрела, а также для заряжания. Но испытания ракеты-торпеды Девеза выявили существенные ее недостатки: низкую устойчивость на курсе; недостаточную дальность хода; слабость взрывного заряда. На вооружение эту «подводную ракету» (реактивную торпеду) не приняли.

Англичанин Джордж Квик (George Quick; 1833— 1873) из Портсмута создал огромную торпеду с пороховым ракетным двигателем, которая несла пороховой взрывной заряд массой 700 фунтов (330 кг). Ее калибр был 61 см (24 дюйма). По расчетам изобретателя, она должна была проходить дистанцию 2000 ярдов (1828 м) на скорости около 135 узлов (250 км/час)! Однако при первом же пуске торпеда взорвалась через несколько секунд после воспламенения порохового «горючего».

Лейтенант Фрэнсис Барбер (Francis Morgan Barber), сотрудник торпедной испытательной станции ВМФ США в Ньюпорте, построил торпеду калибром 30,5 см (12 дюймов). Длина торпеды составила 213 см (7 футов), общая масса 130 кг (287 фунтов), в том числе масса заряда ВВ 21,7 кг (48 фунтов). Ее устройство было достаточно простым: железная труба, обернутая асбестом, находилась внутри деревянного корпуса. Испытания показали полную непригодность торпеды данной конструкции для боевого применения.

Джон Эриксон в 1878—80 гг. сконструировал и построил «наступательную мину большой скорости».
Она представляла собой деревянный цилиндр длиной 610 см (20 футов), внутри которого находился жестяной резервуар с пороховыми шашками. Спереди к нему было прикреплено медное боевое отделение длиной 152 см (5 футов), имевшее форму конуса. Железная арматура соединяла его с поддоном. В движение торпеду приводила струя пороховых газов, выходивших под давлением через отверстие в поддоне, и обтекавших жестяной стабилизатор. Диаметр торпеды был 406 мм (16 дюймов), длина 762 см (25 футов), масса 681 кг (1500 фунтов), масса заряда ВВ — 113,5 кг пироксилина (300 фунтов). Во время испытаний, проведенных в 1880 г. на реке Гудзон, торпеда прошла первые 3I0 футов (95 м) за 3 секунды, т.е. со средней скоростью 61,5 узел (114 км/час). Общая дальность хода составила около 700 футов (214 м).

Эриксон построил экспериментальный миноносец «Destroyer» (длина 40, ширина 3,35 м), в носовой ча-
сти которого находился стальной торпедный аппарат длиной 9,1 метров. Впервые он использовал для пуска торпеды пороховой заряд вместо сжатого воздуха. Заряд воспламенялся от электрической искры и выталкивал торпеду из аппарата. От пламени вышиб-ного заряда загорались пороховые шашки ракетного двигателя. Пуск производился с уровня 7 футов (2,13 м) ниже поверхности воды. Однако цикл испытаний показал непригодность торпеды для практического применения в боевых условиях.

Читайте также:  Наждак из трехфазного двигателя

Русский конструктор, полковник Александр Ильич Шпаковский, предложил Морскому техническому комитету свой проект реактивной торпеды. В течение ряда лет изобретатель работал над особым «ракетным составом», который намеревался использовать как горючее в двигателе своей торпеды. Кроме того, он хотел применить гироскопический прибор для стабилизации движения торпеды по курсу. Предварительное заключение комиссии МТК гласило, что «проектируемая Шпаковским ракетная мина дает наилучший из существующих образец самодвижущейся подводной мины». К сожалению, ее практические испытания окончились неудачей. На воздухе «состав» горел более или менее равномерно. Но под водой он взорвался и разрушил корпус торпеды.

В том же 1879 г. американский инженер Джордж Уикс (George Weeks) издал брошюру «Ракеты и самоходные торпеды» (Rockets and Torpedoes Automobile). В ней была описана разработанная им технология производства «торпед с ракетным составом». Конструктор решил установить на своих торпедах твердотопливные ракетные двигатели, а в качестве горючего для них использовать пороховые шашки цилиндрической формы с высверленной сердцевиной. По его мнению, это должно было способствовать их равномерному сгоранию, следовательно — постоянству скорости истечения образовавшихся газов. Стабилизацию движения «торпед с ракетным составом» под водой Уикс планировал осуществлять одним из двух способов. В первом случае, устойчивость торпеды на курсе обеспечивали шесть плавников-стабилизаторов, расположенных по её окружности. Во втором случае продукты сгорания, проходя через «несколько отверстий, расположенных по окружности и имеющих улиткообразное кручение. должны были придать торпеде вращательное движение и удержать её на расчетной траектории». Подрыв боевого заряда должен был происходить при ударе торпеды о цель. Для пуска своих торпед Уикс разработал специальный аппарат, аналогичный обычному трубному, с той лишь разницей, что торпеда выходила из него самостоятельно после начала работы своего двигателя. В начале 1881 г. изобретатель построил торпеду по первому варианту. Она имела деревянный каркас, обшитый жестью, ее длина была 3,5 метра. В поперечном сечении торпеда имела форму треугольника, обращенного вершиной вниз. В головной части находилось зарядное отделение с 20 кг динамита. В качестве горючего в двигательной установке использовались пороховые шашки длиной 1,5 м и диаметром 15 см, расположенные последовательно друг за другом. В кормовой части торпеды крестообразно располагались вертикальные и горизонтальные рули, стабилизирующие её при движении под водой. На испытаниях, проведенных на торпедной станции ВМФ США в Ньюпорте в том же году, торпеда Уикса показала весьма нестабильные результаты. Скорость колебалась в интервале от 28 до 45 узлов (52— 83 км/час), дальность хода от 300 до 825 футов (91 — 251 м). Это не позволило принять ее на вооружение. Комиссия экспертов констатировала также, что «при своем движении ракета ужасно шумела». Непостоянство ходовых характеристик объяснялось неудовлетворительным качеством пороха, обусловленным низкой технологией его изготовления, и вдобавок значительно ухудшавшимся при долговременном хранении. Пороховые шашки второго эшелона часто не воспламенялись. Кроме того, не удалось добиться приемлемой точности хода по курсу и глубине.

Торпеда Вулвичского арсенала (1883 г.)

Специалисты Вулвичского арсенала (Великобритания) в экспериментальных целях создали маленькую торпеду. Они хотели убедиться на практике, имеют ли смысл дальнейшие работы с ракетными двигателями применительно к торпедному оружию. Дальность ее хода составляла всего-навсего 50 ярдов (45,7 м). В результате серии экспериментов эксперты пришли к отрицательному мнению относительно целесообразности дальнейших изысканий в области торпед с ракетным двигателем.

Полковник армии США Хайрем Бердан (Hiram Berdan; умер в I893 г.) прославился своими винтовками, состоявшими на вооружении в ряде стран мира (в том числе в России, так называемая «берданка»). Кроме винтовки, он сделал немало других изобретений в военном деле (оптический прицел, капсюль центрального воспламенения и другие). Созданная им торпеда отличалась оригинальностью технического устройства и принципа действия. Фактически это был буксировщик, управляемый с борта атакующего корабля и тащивший за собой метательную мину Эриксона с 200-фунтовым (91 кг) зарядом ВВ. Его силовая установка представляла ракетный двигатель, газовая струя которого (получаемая в результате горения пироксилиновых шашек) заставляла вращаться 6 небольших винтов, расположенных один за другим на одной и той же оси.

* Некоторые авторы искажают фамилию Бердан на Борден. Отсюда упоминания о никогда не существовавшей «торпеде Бордена».

Взрыватель и заряд ВВ
Сигнальный штырь
Провода управления
Турбина

Управление движением торпеды оператор осуществлял с выносного пульта по проводам. Расчетная дальность хода составляла 2000 ярдов (1828 м).

Этот американец (Cunningham) из города Нью-Бедфорд (New Bedford), штат Массачусетс, по своей профессии являлся сапожником (подобно создателю подводных лодок Лоднеру Филипсу), но своим истинным призванием он считал пиротехнику. Относительно его торпеды известно мало конкретного, за исключением того факта, что она действительно была построена (в частности, это подтверждает фотография, запечатлевшая изобретателя рядом со своим детищем), и что в течение нескольких месяцев проходила испытания на торпедной станции ВМФ в Ньюпорте. Испытания показали недостаточную устойчивость торпеды на курсе и большую разницу в скорости при каждом прохождении дистанции. В результате специалисты отклонили этот проект.

В I894 г., в день независимости США (4 июля), обиженный на весь мир сапожник-пиротехник запустил свое ракетное чудовище прямо по главной улице Нью-Бедфорда. Со страшным грохотом и скрежетом, извергая пламя и клубы дыма, она проползла несколько десятков метров, затем уткнулась в ледник мясной лавки и там взорвалась. К счастью, никто не пострадал. В дальнейшем мистером Канингхэмом занимались уже не моряки, а чины местной полиции.

Источник

Ответы на популярные вопросы
Adblock
detector