Какие материалы в двигателе

Из какого металла сделан двигатель автомобиля

Каждый автомобиль имеет свои особенности и требовательность к мощности, поэтому установленный в нем мотор подбирается индивидуально. Определить какой именно металл используется в двигателе, можно при условии его демонтажа и разбора. Старые моторы, стоящие в гараже или из аварийных авто, сгодятся обычно только для одной цели – сдать ДВС на металлолом. Хотите узнать какой металл в блоке двигателя чтобы представлять прибыль? Давайте разберемся из какого металла делают двигатели автомобиля и какую ценность они из себя представляют.

Из какого металла сделан блок двигателя и цилиндры

В течении нескольких десятков лет моторы изготавливались исключительно из стали, алюминия, чугуна и других сплавов. Сохранявшийся тренд на уменьшение габаритов и массы, с одновременным увеличением мощности, привел к тому что двигатели всё чаще делают с применением пластика. Но в серийном производстве автомобилей самым популярным оставался чугун. Чтобы определить тип металла в двигателе внутреннего сгорания нужно его разобрать. Если вы решили сдать на металл ДВС, то принимайте во внимание, что обычно моторы принимают как чермет, если его транспортируют в пункт приема в собранном состоянии.

Двигатели из чугуна

При производстве автомобильных двигателей внутреннего сгорания, уже целый век сохраняет лидерство чугун. Данный материал обладает рядом преимуществ перед аналогичными сплавами, кроме небольшой стоимости. Достоинствами чугуна в автомобилестроении считают:

Кроме того, двигатели из чугуна имеют стоимость ниже аналогичных моделей из алюминия. Но существуют у данного материала и свои недостатки. Главный минус чугунного мотора – его огромная масса.

Современные двигатели внутреннего сгорания изготавливают зачастую из инновационного сплава – белого чугуна. Производится это при помощи лазерного отбеливания: серый чугун переплавляют в тонкий слой белого. Этот материал обладает повышенной твердостью и более долговечен. При этом обычно двигатели из белого чугуна при повреждении верхнего слоя силового агрегата, сложно ремонтировать из-за высокой твердости металла. Белый чугун покрывает часть поверхности силового агрегата и обычно наносится на серый чугун, который является основным материалом.

Двигатели из алюминиевого сплава

Обычно в двигателях внутреннего сгорания, алюминий выполняет второстепенную роль и не является основным материалом. Полностью силовой агрегат изготавливают только из кремниево-алюминиевых сплавов. Такие двигатели стоят дорого, но имеют значительно меньшую массу при повышенной мощности. Они используются в гибридах, также из него создают двигатели для болидов Формулы-1 (F1). В обычных двигателях алюминий может использоваться в следующих деталях:

Массово алюминиевые двигатели использовали именно для гоночных автомобилей, поэтому и сегодня применение направленно именно на спортивные машины. Алюминий мягкий и легкий материал, поэтому он помогает значительно снизить массу и габариты двигателя.

Моторы из алюминиево-кремниевых сплавов изготавливали такие компании как BMW, Audi, Porsche, Mercedes-Benz, Chevrolet. Такие силовые агрегаты покрывались никелевым покрытием, что позволяет увеличить КПД мотора в разы. В России автомобили с алюминиевыми движками не возымели популярности, из-за быстрого химического разрушения «никасила». Некоторые сорта топлива, с высоким содержанием серы (например сорта топлива из Российской Федерации), способны разрушить шатун или сжечь поршень. Многие двигатели из алюминия быстро изнашивались. Именно в связи с этими недостатками, популярность алюминиевые моторы не возымели.

Двигатели магниевые и остальные

Кроме алюминия, серого и белого чугуна, а также алюминия, при производстве двигателей внутреннего сгорания используются также и другие металлы, например, стальные и магниевые сплавы. Применение инновационных материалов актуально в основном для использования в скоростных автомобилях, где важно сохраняя мощность движка снизить общую массу транспортного средства. В таком случае автопроизводитель может использовать легкие сплавы не только в роли второстепенного материала, но и вместе чугуна.

Магниевые сплавы имеют массу меньше чем алюминий, поэтому они более целенаправленно могут применяться для снижения веса авто. Недостаток такого материала – большая стоимость сплава в сравнении с аналогичными металлами. Не смотря на этот минус, двигатели из магниевых сплавов применяют в авиации, бензопилах и например в «Запорожцах».

Блок двигателя исполненный из магниевого сплава или другого цветного металла, выглядит эстетично и более привлекательным, чем агрегаты из чугуна. При этом с целью сохранения мощности и увеличению КПД, обычно они имеют такую же конструкцию, но меньшую массу, в сравнении с аналогами из более тяжелых металлов. Также существуют модели с двигателями из меди.

В пункте приема такие силовые агрегаты могут принять по индивидуальным условиям. С целью повысить общую цену двигателя, его рекомендуется разобрать и сдавать по каждой позиции индивидуально, цветные металлы отдельно от чугуна, в очищенном и отсортированном состоянии.

Цветной металл в двигателе. Можно ли сдать?

Весь содержащийся цветной металл в двигателе можно выгодно сдать, если обратиться в профильный приемный пункт. Не в каждой приемке есть в наличии манипулятор, поэтому не все организации способны загрузить, транспортировать и взвесить двигатель внутреннего сгорания, который может иметь массу до 200 килограмм. На цветмет примут не весь двигатель, а только некоторые его компоненты, который изготовлены из цветных сплавов. Обычно двигатели целиком принимают как черный металлолом, поэтому лучше заранее разобрать агрегат и отделить детали из цветного лома. В Москве и Московской области сдать старый двигатель от автомобиля можно по хорошей цене. Например ВторБаза скупает лом алюминия моторного (по цене 90-118 руб./кг.), также вы можете сдать чугун из блока цилиндров ДВС вашей машины. В этом пункте приема есть вся необходимая специальная техника, погрузчики и грузовые автомобили. Компания «ВторБаза» помогает с организацией транспортировки, взвешиванию, разбору и оценке двигателя, с последующим его выкупом. При этом цена на все черные и цветные металлы, принимаемые в приемке, выше чем в других пунктах региона.

Читайте также:  Меняем сальник двигателя ниве

Производство двигателей на заводе ISUZU Япония

Источник

Материалы, применяемые в двигателестроении.

Основные показатели работы ДВС.

При проектировании двигателя конструктор решает коплекс сложных задач, включающий в себя: выбор процессов и компоновки двигателя. Под компоновкой понимают: массу двигателя, его объем и размеры. 1.Мощностные ряды двгателей. Двигатели, составляющие мощностной ряд, характеризуются одинаковой компоновкой и конструкцией главнейших узлов. При проектировании желательно, чтобы новый двигатель входил в уже существующий мощностной ряд. Двигатель МЗ 406(606.1, 606.2,606.3,606.4,405, 408, 409) ЗМЗ 24( 402, 403, 404, 410 и их модификации) РОдоначальник ЗМЗ 53( 511, 66, 73, 513, 512 и др.) Преимущества по проектированию мощностными рядами следующие: снижается стоимость изготовления двигателя, уменьшаются сроки освоения новых двигателей, улучшается качество двигателя. При проектировании мошностными рядами рационально использовать принцип геометрического подобия; основным размером, определяющим подобие двигателя является диаметр цилиндра и его соотношение с другими геометрическими размерами. Приступая к роектированию двигателя конструкторам известно из задания эффективная мощность Nе и др. параметры. Nе связана с конструктивными параметрами, средним эффективным давлением, в следующем соотношении: (формула) 2.Скорость поршня и частота вращения к/в. Определяют быстороходность двигателя, зависит от его типа и назначения. С увеличением скорости поршня увеличивается тепловая напряженность двигателя, силы инерции, а следовательно увеличивается износ деталей КШМ. В зависимости от назначения устанавливают следующие предщелы скорости поршня: 1.тихоходные Vп.ср( средняя скорость движения поршня)

2. Этапы проектирования двигателей. 1. Технические условия, включающие в себя общие требования к двигателю от заказчика: 1.1 Назначение и тип двигателя. 1.2 Номинальная мощность 1.3 Габаритные размеры и масса 1.4 Частота вращения, скорость поршня 1.5 Число тактов 1.6 Число и расположение цилиндров 1.7 Тип механизмов и систем. 2. Выбор размеров цилиндра и конструктивные схемы двигателя. Основные параметры выбираются с учетом новейших разработок конструкции ДВС, придерживаются принципа проектирования по мощностным рядам, учитывая возможность длительной эксплуатации. 3. Составление эскизного проекта- заключается в выборе оптимальной конструкции основных деталей и узлов двигателя. Проект выполняется в нескольких вариантах небольшой группой конструкторов. Каждый из вариантов проекта должен удовлетворять требования заказчика. После составления все варианты эскизного проекта выставляются на рассмотрение и защиту представителям заказчика, который выбирает устроивший их вариант. В этом проекте помимо схем, деталей и узлов входят поперечный и продольный разрезы двигателя. 4. Технический проект. Выполняется группой конструкторов и технологов, включает в себя достаточно подробные чертежи деталей и узлов, механизмов, систем ДВС,доработанные чертежи эскизного проекта и следующие расчеты: тепловой, динамический, на прочность и износостойкость. При этом необходимо стремиться: а) уменьшить кол-во деталей; б) использовать стандартные детали и узлы. 5. Составление рабочих чертежей. ВЫполняется в три этапа: 1.Чертежи крупных кованных и литых деталей для изготовления которых иребуется сложная технологическая оснаска и длительная мех. обработка (к/в, блок, головка блока, шьаны) 2.Чептежи мелких деталей, в том чмсле крепежных. 3.Продольный и поперечный разрез двигателя с учетом всех изменений.6. Испытание и доводка двигателя. В процессе испытаний выявляются все несоответствия выходящих показателей двигателя тех. проекта и несовершенство отдельных деталей и узлов. Доводочные работы направлены на устранение всех выявленных недочетов и усовершенствование конструкции ДВС.

Материалы, применяемые в двигателестроении.

1. Чугун. Чугун- это сплав железа и углерода, где углерода более 2%. Свойства: хорошие металлические качества и обрабатываемсть резанием, высокая износостойкость, жароустойчивость, прочность, выносливость. В некоторых двигателях общий вес чугунных деталей составляет до 80% массы двигателя( крупногабаритные дизеля, судовые, тепловозные) Чугуны бывают серые, белые, отбеливающие, ковкие. 1.1 Серые чугуны- детали, получаемые лтьем, имеющие сложную форму и обрабатываемость резанием( блок цилиндра, маховик) 1.2 Отбеливающие- р/в. 1.3 Ковкий чугун применяется редко( рычаги, рамы, иногда поршни) 1.4 Белые легированные- детали, подврегающиеся большим ударным коррозиционным нагрузкам( пример: на выпускном клапане есть наплавки) Чугуны редко применяются в чистом виде. Легирующие элементы: титан, никель, хром, молибден,марганец, вольфрам.

5.Стали. Стали- это сплав железа и углерода, где углерожда меньше 2%. Стальные детали изготавливают литьем, штамповкой, ковкой. В двигателестроении наибольшее применение получили штамповка и ковка. Штампованные детали- шатун,поддон,крышки; Кованные детали- цепи, к/в; Литые детали- р/в, маховик, к/в. Стали легируют одним, двумя или тремя основными элементами ( ХГН, 40Х, 20Х)

6.Сплавы. 3.1 Сплавы с малым коэффициентом тепловых расширений( железо, никель,хром), тк. коэффициент теплового расширения очень маленький, то применяется для изготовления поршней и компенсаторов.3.2 Тяжелые сплавыиспользуются для изготовления противовесов, грузов. 3.3 Титановые сплавы(алюминий, ванадий,марганец, молибден,хром,кремний). Свойства: прочность,лекгость, не подвержен коррозии, не магничен, жароустойчив. Применяют как заменители стали для наиболее ответственных деталей двигателя. 3.4 Литейные алюминиевые сплавы : 1.силумины- обладают высокой прочностью 2.алюминий и медь- более прочные по сравнению с силуминами, поэтому их применяют в более ответственных деталях( поршни, штанги) 3.5 Литейные магнивые сплавы- имеют более высокие физические свойства по сравнению с аллюминиевыми. Широкое применение не получили, в связи с высокой взрывоопасностю. В качестве основны присадок используют аллюминий, цинк,марганец.

Сплавы на медной основе. 1.Сплав латуни- сплав меди и цинка; присадки(кремний, олово, алюминий,никель- улучшают физические и механические свойства, литейные качества, обрабатываемость резанием и давлением.) преимущества: высокая антикоррозиционная стойкость и износостойкость.2. Бронзы- сплав меди+олово. Свойства: более пластичен, чуть лучше литейные свойства. 3. Припои. 3.1оловянисто-свинцовые 3.2 Оловянисто-свинцовосурьмяные; Для пайки алюминиевых сплавов применяются оловянисто-цинковые припои.

7.Подшипниковые сплавы. Сплавы на основе кадмия. Должны обладать высокими антикоррозиционными свойствами, теплостойкостью, хорошей сплавляемостью с основой вкладыша.

9.Литые пластмассы. 1.Органическое стекло- термопластичная масса, получаемая полимеризацией метилового эфира метакриловой кислоты при нагреве и воздействии перекисных соединений. 2.Асбест. применяют в виде аморфных масс, листов, шнуров,лент,тканей, как теплостойкий и уплотняющий материал. 3.Резиновые материалы. Детали из резины износостойки, хорошо сопрягаются с металическими и покрытыми тканями деталями( ремни приводов, прокладки, диафрагмы). 4.Кожанные материалы. Используются для прокладок,чехлов,инструментальных сумок толщиной 0,5- 7 мм. 5.Текстильные материалы. Материалы из хлопка, шелка,шерсти,льна, нитей,лент, шнуров, ваты,войлока,применятся в качестве уплотнений,фильтрующих материалов. 6.Стекла и эмали. Эмали из смесей окислов натрия,алюминия,кобальта, никеля, железа, титана и др.материалов. Стойки при t=3500 С и в виде пленки толщиной до 0,2мм, нанесенных на поршни,клапаны, хорошо противостоят тепловым ударам и защищают детали от тепловых потоков и коррозии. 7.Лаки и краски. Широко используют для защиты материалов от коррозии в качестве декоративного покрытия и для окраски трубопроводов в условные цвета. Лаками называются растворы искусственных или природных смол в спирте,бензине,ацетоне,маслах. Эмалевые краски- смеси растворов,лаков с красящими пегментами различных цветов.

Читайте также:  Двигатель вортекс шевроле тахо

13. Сущность процессов сжатие и сгорание. В период процесса сжатия в двигателе повышается давление и температура рабочего тела, что обеспечивает надежное воспламенение и эффективное сгорание топлива. (рис.) Условно принимаем,Что процесс сжатия в действительном цикле происходит по политропе с переменным показателем n1, который в ачальный период сжатия превышает показатель аддиабаты к1(идет подвод тепла от нагретых стенок к рабочему телу), в какой то момент времени n1 становится равным к1( температура выравнивается у рабочего тела и у стенок), а далее n1 становиться менее к1( потому что рабочее тело отдает тепло стенкам цилиндра). Но в связи с трудностью определения n1 принимают, что процесс сжатия происходит по политропе с постоянный показателем n1. Расчет процесса сжатия сводиться к определению среднего показателя политропы сжатия n1, давления и температуры в конце процесса сжатия Рс и Тс.

Значение показателей политропы сжатия n1, в зависимости от к1 устанавливаются в следующих пределах: пределы изменения Рс и Тс: Для двигателей с впрыском: для КД: для ДД: Процесс сгорания. Основной процесс рабочего цикла,в течении которого теплота, выделяющаяся вследствие сгорания топлива идет на повышение внутренней энергии рабочего тела и совершение механической работы. На характер протекания процесса сгорания оказывает влияние большое число различных факторов: 1.параметры процессов впуска и сжатия; 2. Качество распыления топлива; 3.Частота вращения к/в. С целью упрощения термодинамических расчетов принимают, что процесс сгорания в БД происходит при постоянном объеме, а в ДД при постоянном объеме и давлении. Целью расчета процесса сгорания является определение температуры и давления в конце видимого сгорания(Pz и Tz) Степень повышения давления: Степень предварительного расширения:

14. Методы расчета процессов выпуска и расширения. Изменение давления в конце процесса расширение, показанное на рисунке, схематически показывают действительное изменение давления в цилиндрах двигателя. В реальных условиях расширение протекает по сложному закону, зависящему от теплообмена между газами и стенками цилиндра. Т.к процесс расширения протекает по политропе с переменным показателем, который в начальный период изменяется с 0 до 1( идет интенсивное догорание топлива, температура газов повышается несмотря на то, что идет процесс расширения),затем увеличивается достигает значения показателя адиабаты и наконец превышает показатель адиабаты. Для упрощения расчетов кривая процесса расширения обычно принимается за политропу с постоянным показателем n2. Среднее значение величины n2 изменяется в пределах: БД ДДю Формулы для определения Тв и Рв: где д= е/с- степень последующего расширения.

Пределы изменения. Процесс выпуска: b’-открытие выпускного клапана r’- закрытие выпускного клапана. Вначале расчета процесса впуска задаются параметры расчета выпуска: температура и давление остаточных газов, а точность выбора величины давления и температуры остаточных газов проверяется по формуле: При проектировании двигателя стремятся уменьшить величины Pr,чтобы избежать возрастания насосных потерь и коэф-та остаточных газов. В настоящее время проблема снижения токсичности решается как создателями та и эксплуатационниками двигателей. С точки зрения конструкции двигателистов эта проблема решается по 3м основным направлениям: 1.Совершенствование рабочего процесса( применение систем питания с эл. впрыском, вентиляцией картера) 2.Разработка дополнительных устройств (нейтрализаторы) 3.Разработка принципиально новых двигателей, позволяющих кардинально решать проблему не загрязнения окр. среды в процессе эксплуатации.

15. Методика построения круговой индикаторной диаграммы. Существует 2 способа построения диаграммы: 1.аналитический 2.графический. Графический метод более точный, но излишне сложный, поэтому для приближенного расчета ДВС пользуются аналитическим методом, применяя значения давлений и объемов, полученных в тепловом расчете. Построение диаграммы осуществляется на миллиметровой бумаге формата А3 в следующей последовательности: 1.Выписываются исходные данные из теплового расчета и определяются значения объема камеры сгорания. Значения: Pa, Pc, Pz, Pb, Pr, Po Va, Vh, Vc, n1,n2,Va= Vh+Vc, Vc= Vh/ е-1, е 2.Выбор масштабов давления и объема- осуществляется с учетом максимального давления и объема, а также размеров миллиметровой бумаги, при этом высота диаграммы должна быть в полтора раза больше ее ширины. Mp= Pz max/ Lвысот. [Мпа/ мм] Mv= Va max/ Lшир.[См 3/ мм] 3. Определение координат переходных точек диаграммы. (ФОРМУЛЫ) 4.Проводим оси координат и откладываем переходные точки. 5.Определение координат переходных точек политропы сжатия и расширения. Задаемся не менее чем 6тью объемами между ВМТ и НМТ. При этом большее число объемов( 2/3) берется ближе к ВМТ, т.к по ВМТ давление изменяется более резко. 6.По заданным объемам определяем значение соответствующих давлений. А)построение политропы сжатия формула б) построение политропы расширения 7.Для дизеля 8. Построение круговой индикаторной диаграммы по расчетным точкам.

16. Тепловой баланс бензиновых и дизельных ДВС. Тепло, выделяющееся при сгорании топлива в цилиндрах двигателя не может быть полностью преобразовано в полезную механическую работу. Распределение тепловой энергии топлива, сгоревшего в двигателе наглядно иллюстрируется составляющими внешнего теплового баланса. Тепл.бал позволяет определить тепло, превращенное в полезную эффективную работу, т.е установить степень достигнутого совершенства теплоиспользования и наметить пути уменьшения имевшихся потерь. Знания отдельных составляющих теплового баланса позволяют судить о тепло напряжённости деталей двигателя, рассчитать систему охлаждения, выяснить возможность использования теплоты отработавших газов. В общем виде тепл.балас может быть представлен в виде след. составляющих:

низшая теплота сгорания, часовый расход топлива; теплота, эквивалентная эффективной работе двигателя; теплота, потерянная с отработавшими газами ; теплота, передаваемая охл.среде; коэффициент пропорциональности; диаметр цилиндра, взятый в см; показатель степени; теплота, потерянная из-за химической неполноты сгорания топлива; неучтенные потери

17. Методика проведения теплового расчета ДВС. 1. При проведении теплового расчета для нескольких скоростных режимов обычно выбирают 3-4 основных режима: 1.1режим min частоты вращения nxx(600-1000) 1.2 max крутящего момента nMкр.max= (0,4-0,6)nN 1.3 номинальной мощности nN= nN

1.4 max частота вращения к/в nmax= (1,05-1,2) nN 2. Выбор топлива( от степени сжатия) 3.Параметры рабочего тела. 3.1Теоритически необходимое кол-во воздуха для сгорания 1кг. топлива; 3.2 Количество горючей смеси, М1; 3.3Общее количество продуктов сгорания.М2; 4. Давление и температура окружающей среды. 5.Процесс впуска; 6.Процесс сжатия; 7.Процесс сгорания; 8.Процесс расширения и выпуска( проверка температуры Тr) 9.Индикаторные параметры рабочего цикла; 10. Эффективные показатели; 11. Основные параметры цилиндра и двигателя; 12.Построение индикаторной диаграммы; 13.Тепловой баланс ДВС

Читайте также:  Коробка передач камаз вождение

18. Индикаторные параметры рабочего цикла. 1.Среднее индикаторное давление. Площадь не скруглённых диаграмм в определенном масштабе выражает теоритическую расчетную работу газов за один цикл двигателя. Эта работа, отнесенная к ходу поршня является теоритическим средним индикаторным давлением-pi ’ Есть формулы для расчета как для БД так и для ДД(длинная). Среднее индикаторное давление pi действительного цикла, отличается от pi ’ на величину, пропорциональную уменьшению расчетной диаграммы за счет скругления в точках с,z,в.ьУменьшение теоритического среднего индикаторного давления вследствие отклонения действительного процесса от расчетного цикла, оценивается коэффициентом полноты диаграммы ци и величиной среднего давления насосных потерь ∆ pi. Коэффициент полноты диаграммы принимается из предела для каждого двиг. свой(примерно до 1).Среднее индикаторное давление определяется по формуле: pi= pi ’ * ци 2. Индикаторная мощность- работа, совершаемая газом внутри цилиндра в единицу времени.

Дата добавления: 2019-02-12 ; просмотров: 784 ; Мы поможем в написании вашей работы!

Источник

Конструкция автомобильного двигателя, виды

Автомобильный двигатель внутреннего сгорания – агрегат, состоящий из ряда узлов и деталей. Работает он за счет того, что топливно-воздушная смесь функционирует в закрытой от внешней среды камере сгорания. Попадая туда, смесь воспламеняется.

Вследствие расширения газов (они, в свою очередь, появляются за счет воспламенения смеси), образуется тепловая энергия. Согласно законам физики, она трансформируется в механическую, начиная передавать крутящий момент через трансмиссию на ведущие колеса. На основе всех этих процессов и работает автомобильный двигатель внутреннего сгорания.

Классификация двигателей ВС

Со времен первой разработки и до наших дней производятся поршневые и роторно-поршневые ДВС (Ванкеля).

Поршневой двигатель внутреннего сгорания

Рабочая камера сгорания в поршневых моторах располагается внутри цилиндра, между поверхностью плоскости ГБЦ (головки блока цилиндров) и днищем поршня, когда тот находится в верхней мертвой точке (максимальный подъем поршня).

Тепловая энергия образуется при помощи КШМ (кривошипно-шатунного механизма), обеспечивающий возвратно-поступательные движения. Полученная энергия в результате воспламенения смеси давит на поршень, передавая энергию на коленчатый вал.

Поршневые моторы существуют в трех вариациях:

Бензиновый карбюраторный автомобильный двигатель. Посредством карбюрации, топливно-воздушная смесь образуется вне камеры сгорания (внешнее смесеобразование), а готовится в карбюраторе. Смесь воспламеняется от свечи зажигания.

Бензиновый инжектор. смесеобразование происходит внутри камеры сгорания. Топливо подается электронно-управляемыми форсунками, которые могут быть установлены на конце впускного коллектора, либо вмонтированы в ГБЦ. Управляет и корректирует работу всего мотора ЭБУ (электронный блок управления двигателем).

Дизельный двигатель. Воспламенение дизельного топлива происходит без участия свечи зажигания, а посредством сжатия воздуха, в результате чего температура воздуха превышает температуру горения. Впрыск топлива осуществляется форсунками, а за впрыск под давлением отвечает ТНВД (топливный насос высокого давления).

Роторный двигатель внутреннего сгорания

Роторно-поршневой автомобильный двигатель работает следующим образом: рабочая камера двигателя овальной формы, внутри которой движется треугольный ротор, двигающиеся по планетарной траектории вокруг своей оси.

Ротор берет на себя функцию поршня, КШМ и ГРМ (газораспределительного механизма). В камере есть 4 отсека, в каждом их которых происходит такт:

Роторно-поршневые двигатели имеет высокий КПД относительно поршневого, так как потери на трения у первого значительно меньше, но максимальный ресурс ротора не превышает 100 000 км.

Устройство поршневого двигателя автомобиля

Наиболее простой двигатель внутреннего сгорания имеет рядное расположение цилиндров. В современных моторах их от 3 до 6. Более компактный автомобильный двигатель имеет V-образную форму, то есть поршни расположены под углом напротив друг друга.

Цилиндров у V-образного двигателя может быть 4, 6, 8, 10 и 12. Также существуют рядно разнесенные моторы VR и W, их конструкция сложна, поэтому устройство мотора лучше изучить на рядной «четверке».

Основа двигателя – блок цилиндров. В этих цилиндрах двигаются поршни. Внизу блока крепится коленвал на подшипниках трения (вкладышах), к нему присоединен шатун, а к шатуну – поршень.

Такой узел называется кривошипно-шатунным. Поскольку коленчатый вал имеет, соответственно названию, форму колена, без шатуна невозможно было бы обеспечить возвратно-поступательные движения поршня.

Конструкция шатуна выполнена так, что его нижняя часть делает колебательные движения, а верхняя часть, соединенная с поршнем, не движется в боковом направлении.

Поршень двигателя имеет три кольца: два компрессионных и одно маслосъемное. О предназначении колец говорит само название: компрессионные обеспечивают давление в цилиндре, не допустив прорыва газов в картер, а маслосъемные кольца снимают масло со стенок цилиндра и сбрасывают его в масляный картер.

К коленчатому валу с передней стороны соединен шкив для обеспечения работы навесного оборудования через ремень, а также работы ГРМ, если тип привода ременной. Если ГРМ цепного типа, то на коленвале установлена звезда. Дополнительная звезда на коленчатом валу может быть установлена, если привод маслонасоса цепной.

С задней стороны к коленвалу устанавливается маховик. Маховик аккумулирует механическую энергию, и через трансмиссию передает ее на ведущие колеса. На маховике установлены зубцы для соединения со стартером.

Сверху цилиндры герметично накрыты головкой блока цилиндров, между которыми установлена металлическая прокладка. Камера сгорания находится как раз в ГБЦ, и может быть сферической или полусферической формы, а в дизельных моторах камера сгорания находится в выемке поршня.

В конструкции классической ГБЦ есть:

За возврат клапана в исходное место отвечает пружина, которая накрывается тарелкой, и фиксируется «сухарями».

Привод ГРМ, чаще всего цепной или ременной. Для цепного привода требуются пластиковые успокоители и натяжитель механического или гидравлического типа. Ременной привод ГРМ простой конструкции включает в себя ремень, обводной ролик и натяжитель.

Как работает 4-тактный автомобильный двигатель

Четырехтактный автомобильный двигатель внутреннего сгорания имеет, соответственно, 4 такта:

По базовому принципу работают все двигатели внутреннего сгорания. Их разница с дизельными в том, что вместо свечи высокое давление образует воспламенение, а точнее – детонация.

Источник

Ответы на популярные вопросы
Adblock
detector