Мощность двигателя для редуктора

Содержание
  1. Технические характеристики редуктора
  2. Подписка на рассылку
  3. Как выбрать мотор-редуктор: руководство инженера
  4. Как подобрать мотор-редуктор инженеру-разработчику
  5. Крутящий момент на выходе редуктора
  6. Мощность
  7. Предельная термическая мощность Pt [кВт]
  8. Коэффициент полезного действия (КПД)
  9. Передаточное число [ i ]
  10. Скорость вращения
  11. Эксплуатационный коэффициент fs
  12. Коэффициент безопасности [S]
  13. Классификация редукторов в зависимости от расположения осей входного и выходного валов в пространстве.
  14. Классификация редукторов в зависимости от способа крепления.
  15. Конструктивные исполнения по способу монтажа.
  16. ВАРИАНТЫ СБОРКИ.
  17. Выбираем мотор редуктор правильно
  18. Мы готовы помочь в подборе мотор-редуктора
  19. Кинематический и силовой расчет редуктора. Расчет крутящих моментов на валах редуктора
  20. Выбор мотор-редуктора
  21. Тип редуктора
  22. Номинальный крутящий момент на выходном валу
  23. Конструктивные исполнения по способу монтажа.
  24. Передаточное число [I]
  25. Крутящий момент редуктора
  26. Эксплуатационный коэффициент (сервис-фактор)
  27. Мощность привода
  28. Коэффициент полезного действия (КПД)
  29. Как выбрать редуктор
  30. Взрывозащищенные исполнения мотор-редукторов
  31. Вращающий момент при помощи редуктора
  32. Конструктивные исполнения по способу монтажа.
  33. Показатели надежности
  34. Как выбрать редуктор по мощности двигателя
  35. Конструктивные исполнения по способу монтажа.

Технические характеристики редуктора

Подписка на рассылку

Для того, что бы правильно выбрать редуктор для применения в составе привода необходимо знать его основные параметры:

Рассмотрим эти параметры более подробно.

Тип редуктора зависит от варианта применяемой передачи. Основные типы передающих ступеней это цилиндрические, червячные, конические, планетарные или волновые. Редуктор может состоять как из одной, двух и более ступеней одного вида. Так же используются редукторы, совмещающие различные типы ступеней, например червячно-цилиндрический или планетарно-червячный.
Существуют еще несколько видов передач, таких как червячные-глобоидные, спироидные, цевочные и другие. Но они являются дальнейшим развитием уже указанных основных типов передач.
Выбор редуктора зависит от его назначения, ограничений по массе, крутящему моменту, габаритам, компоновке элементов привода.
Главный параметр – геометрическая характеристика, которая определяет массогабаритные и энергосиловые параметры. Зависит от типа редуктора и определяется в соответствии с ГОСТ 31592-2012.
В цилиндрическом редукторе это расстояние между осями тихоходной и соседней ступеней (рис. 1азмер AwT);

Передаточное отношение – показывает, во сколько раз изменяется крутящий момент и частота вращения на тихоходном (выходном) валу редуктора, по сравнению с входным валом. Безразмерная величина.
Это ключевой параметр работы редуктора, равный произведению всех передаточных чисел его ступеней. Чем их больше, тем больше будет общее передаточное отношение редуктора.

В таблице указаны нормативные показатели передаточных чисел для одной степени разных типов:


Монтажное исполнение так же может быть различным – сверху, сбоку, спереди, сзади. Более наглядно это изображено на рисунке:

Климатическое исполнение – этот параметр обязателен не только для редукторов, но и в целом для любого промышленного оборудования или изделия. Показывает, в каких климатических условиях (температура, влажность, осадки и т.д.) допустима эксплуатация, определяется ГОСТ 15150-69.
В заключение приведем пример обозначения редуктора:

Источник

Как выбрать мотор-редуктор: руководство инженера

Как подобрать мотор-редуктор инженеру-разработчику


Угловые редукторы помогают сократить время простоя и количество запасных частей для более высокой производительности

Изготовление редукторов под конкретную задачу становится все более распространенной услугой на рынке, главным образом, потому что изготовление таких редукторов стало проще, чем когда-либо.

Однако это не означает, что упростился этап разработки. Тем не менее, современное производство позволяет поставщикам изготавливать редукторы и их компоненты непосредственно под условия конкретного технического задания.

Новые подходы в предоставлении технической поддержки, а также новые станки, программное обеспечение для автоматизации и проектирования дают возможность ОЕМ-производителям и конечным пользователям получать недорогие редукторы даже в относительно небольших количествах.

Класс обслуживания. После того как инженер определился с коэффициентом условий эксплуатации, его следующий шаг – определение класса обслуживания. Например, редуктор, соединенный с простым электродвигателем переменного тока, который приводит в движение равномерно нагруженный конвейер с постоянной скоростью 20 часов в день, может иметь класс обслуживания 2.


Преимущественной задачей инженера-разработчика является разработка и расчет конструкции редукторов и электродвигателей. Такие комплекты оборудования получают номер в виде римской цифры соответствующего класса обслуживания (например – I, II или III) который равен классу обслуживания для дискретного редуктора (в данном случае – 1,0, 1,41 или 2,0).

Такую информацию, как правило, предоставляют сами производители редукторов в виде диаграмм в которых перечислены классы обслуживания. Для правильного использования этих диаграмм инженер-проектировщик должен знать входную мощность, тип использования, необходимый коэффициент редукции. Например, предположим, что для решения задачи необходим двигатель мощностью 2 л.с. и редуктор с коэффициентом редукции 15:1. Для правильного определения класса обслуживания найдите на диаграмме точку, в которой пересекается колонка с мощностью 15 л.с. и ряд с коэффициентом редукции 15:1 – в данной точке находится редуктор с размером 726. В соответствии с системой внутренней индексации номер 726 определяет редуктор имеющем центральное расстояние 2,62. Такие диаграммы также работают и в обратном направлении, и инженер может определить крутящий момент и скорость вращения у редуктора заданного размера.


Данная диаграмма показывает значения для выходного вала двигателя (с фланцем) или непосредственного соединения (без фланца). Использование диаграммы позволяет инженеру проектировщику проверить, что 726 редуктор с коэффициентов редукции 15:1 будет иметь скорость вращения выходного вала 116,7 об/мин и крутящий момент 112 Нм, при условии, что на входном валу редуктора установлен двигатель мощностью 2 л.с.

Вынос нагрузки на валу. После того как инженер проектировщик выбрал размер редуктора, с помощью каталога или сайта производителя, на котором как правило, также перечислены и предельные значения для максимального выноса нагрузки на валу. Совет: если вынос нагрузки в задаче превышает допустимое значение, увеличивайте размер редуктора, чтобы он мог выдерживать вынесенную нагрузку.

Монтаж. На данном этапе разработчик уже определил размер редуктора и его основные возможности. Следующий шаг – выбор типа монтажа. Компании производители редукторов предоставляют множество вариантов для монтажа своих редукторов разных размеров. Самый распространенный тип монтажного приспособления – фланцевый с полым валом для двигателя с подковообразной рамой и выходным валом, направленным в левую сторону. В тоже время существует множество других вариантов. Возможны такие варианты как установочные ножки для изменения высоты установки, полые входные и выходные валы. Все производители редукторов перечисляют все возможные варианты установки своих редукторов в каталогах и веб-сайтах.

Смазка, уплотнения и интеграция двигателя. После того как завершено определение размера и конфигурации редуктора остается только определить некоторые финальные параметрами. Большинство производителей поставляют редукторы уже наполненные смазкой. Но, все же, большинство редукторов поставляются без смазки, чтобы пользователи имели возможность воспользоваться сайтом компании производителя выбрать смазочный материал, подходящий для условий эксплуатации на площадке клиента. Для конструкций, в которых присутствует вертикальный вал, некоторые производители рекомендуют использовать два комплекта уплотнений. Наконец, множество редукторов в конечном итоге монтируются на двигателе пи помощи подковообразной рамы, многие компании производители предлагают на этапе заказа произвести интеграцию двигателя и редуктора в единую конструкцию.

Лучшим подходом при выборе редуктора это тесное общение с консультантами и использование специально изготовленных редукторов и сборок редуктор-двигатель если того требует техническое задание, некоторые такие комбинации могут быть достаточно эффективными. Фактически, непрерывное и тесное взаимодействие с представителями компании-производителя при обсуждении параметров предварительного проектирования мотор-редуктора гарантирует, что полученная комбинация двигателя и редуктора будет работать в соответствии со спецификациями полученными из расчетов и испытаний выполненных заводом изготовителем. Также стоит проверять расчеты выполненные компанией-производителем для того, чтобы вовремя определить расхождения и предотвратить потенциальные проблемы которые может вызвать мотор-редуктор на площадке заказчика.

Запомните, что редуктор, изготовленный под заказ и редуктор, выбранный из стандартного ряда, не являются взаимоисключающими решениями. Там где использование применением редукторов изготовленных под заказ не оправданно (например, требуемое количество недостаточно велико) стоит рассмотреть возможность работы с производителями, которые продают редукторы, построенные на основе стандартных модульных компонентов. В обратном случае, для приобретения небольших партий, полностью заказных редукторов, обратите внимание на производителей, которые используют новейшие САПР, САМ и станки ЧПУ для оптимизации обработки и снижения стоимости изделия.

Читайте также:  Длина двигателя ваз 21099

Еще один, последний, совет: после того как вы выбрали мотор-редуктор и установили его, проведите несколько тестовых прогонов в условиях производства, с типичными рабочими сценариями. Если работа мотор-редуктора сопровождается необычно высокой температурой, шумом или повышенной нагрузки, необходимо повторить процесс выбора редуктора или обратится за консультацией к производителю.

Источник

Крутящий момент на выходе редуктора

1 Крутящий момент на выходном валу редуктора M2 [Нм]
Крутящим моментом на выходном валу редуктора называется вращающий момент, подводимый к выходному валу мотор-редуктора, при установленной номинальной мощности Pn, коэффициенте безопасности S, и расчетном сроке службы 10000 часов, с учетом КПД редуктора.
2 Номинальный крутящий момент редуктора Mn2 [Нм]
Номинальным крутящим моментом редуктора называется максимальный крутящий момент, на безопасную передачу которого рассчитан редуктор, исходя из следующих величин:
. коэффициент безопасности S=1
. срок службы 10000 часов.
Величины Mn2 рассчитываются в соответствии со следующими стандартами:
ISO DP 6336 для шестерен;
ISO 281 для подшипников.

3 Максимальный вращающий момент M2max [Нм]
Максимальным вращающим моментом называется наибольший крутящий момент, выдерживаемый редуктором в условиях статической или неоднородной нагрузки с частыми пусками и остановками (это величина понимается как мгновенная пиковая нагрузка при работе редуктора или пусковой крутящий момент под нагрузкой).
4 Необходимый крутящий момент Mr2 [Нм]
Значение крутящего момента, соответствующее необходимым требованиям потребителя. Данная величина всегда должна быть меньше или равна номинальному значению выходного крутящего момента Mn2 выбранного редуктора.
5 Расчетный крутящий момент M c2 [Нм]
Значение крутящего момента, которым необходимо руководствоваться при выборе редуктора с учетом требуемого крутящего момента Mr2 и эксплуатационного коэффициента fs, вычисляется по формуле:

Мощность

1 Номинальная входная мощность Pn1 [кВт]
Значение данной величины, приведенное в таблицах выбора редукторов, соответствует допустимой входной мощности, передаваемой на входной вал редуктора при скорости n1, коэффициенте безопасности S=1 и расчетном сроке службы редуктора 10000 ч.

2 Выходная мощность P2 [кВт]
Полезная мощность, передаваемая на выходной вал редуктора, вычисляется по следующим формулам:

Значения динамического КПД редукторов указаны в таблице (A2)

Предельная термическая мощность Pt [кВт]

Данная величина равна предельному значению передаваемой редуктором механической мощности в условиях непрерывной работы при температуре окружающей среды 20°C без повреждения узлов и деталей редуктора. При температуре окружающей среды, отличной от 20°C, и прерывистом режиме работы значение Pt корректируется с учетом тепловых коэффициентов ft и коэффициентов скорости, приведенных в таблице (A1). Необходимо обеспечить выполнение следующего условия:

Относительная продолжительность включения (I)% равна процентному отношению времени работы под нагрузкой tf к сумме времени работы под нагрузкой и времени покоя tr:

Коэффициент полезного действия (КПД)

1 Динамический КПД [ηd]
Динамический КПД представляет собой отношение мощности, получаемой на выходном валу P2, к мощности, приложенной к входному валу P1.

Справочные значения КПД указаны в следующей таблице: (A2)

Передаточное число [ i ]

Характеристика, присущая каждому редуктору, равная отношению скорости вращения на входе n1 к скорости вращения на выходе n2:

Скорость вращения

2 Скорость на выходе n2 [мин-1]
Выходная скорость n2 зависит от входной скорости n1 и передаточного числа i; вычисляется по формуле:

Эксплуатационный коэффициент fs

Эксплуатационный коэффициент является количественным показателем тяжести предполагаемых условий эксплуатации редуктора с приблизительным учетом продолжительности ежедневного цикла работы, изменений нагрузки и возможных перегрузок, связанных с особенностями конкретных условий эксплуатации изделия. Приблизительные значения эксплуатационного коэффициента даны в таблице (A3) ниже:

Коэффициент безопасности [S]

Значение коэффициента равно отношению номинальной мощности редуктора к реальной мощности электродвигателя, подсоединенного к редуктору:

Классификация редукторов в зависимости от расположения осей входного и выходного валов в пространстве.

1. С параллельными осями входного и выходного валов 1. Горизонтальное; оси расположены в горизонтальной плоскости; оси расположены в вертикальной плоскости (с входным валом над или под выходным валом); оси расположены в наклонной плоскости 2. Вертикальное 2. С совпадающими осями входного и выходного валов (соосный) 1. Горизонтальное 2. Вертикальное 3. С пересекающимися осями входного и выходного валов 1. Горизонтальное 2. Горизонтальная ось входного вала и вертикальная ось выходного вала 3. Вертикальная ось входного вала и горизонтальная ось выходного вала 4. Со скрещивающимися осями входного и выходного валов 1. Горизонтальное (с входным валом над или под выходным валом) 2. Горизонтальная ось входного вала и вертикальная ось выходного вала 3. Вертикальная ось входного вала и горизонтальная ось выходного вала

Классификация редукторов в зависимости от способа крепления.

Конструктивные исполнения по способу монтажа.

Условные изображения и цифровые обозначения конструктивных исполнений редукторов и мотор-редукторов общемашиностроительного применения: (изделий) по способу монтажа установлены ГОСТ 30164-94.
В зависимости от конструкции редукторы и мотор-редукторы разбиты на следующие группы:

а) соосные;
б) с параллельными осями;
в) с пересекающимися осями;
г) со скрещивающимися осями.

К группе а) отнесены и изделия с параллельными осями, у которых концы входного и выходного валов направлены в противоположенные стороны, а их межосевое расстояние составляет не более 80мм.
К группам б) и в) отнесены также вариаторы и вариаторные приводы. Условные изображения и цифровые обозначения конструктивных исполнений по способу монтажа характеризуют конструктивные исполнения корпусов, а также расположение в пространстве поверхностей крепления валов или осей валов.

Условное обозначение изделий группы а) состоит из трех цифр:

ВАРИАНТЫ СБОРКИ.

В соответствии с ГОСТ 20373-94 редукторы и мотор-редукторы выполняют по одному из стандартных вариантов сборки, которые отличаются по количеству, взаимному расположению, форме и размерам выходных концов валов. Условные изображения и обозначения вариантов сборки по ГОСТ 20373 являются составной частью условных обозначений редукторов и мотор-редукторов общемашиностроительного применения, предназначенных для привода машин, механизмов и оборудования. Стандарт не распространяется на соосные зубчатые редукторы и мотор-редукторы и является рекомендуемым для специальных. Условные изображения и цифровые обозначения вариантов сборки редукторов и мотор-редукторов характеризуют взаимное расположение выходных концов валов и их число.

Условные изображения и цифровые обозначения вариантов сборки первой ступени относительно второй червячных и цилиндрическо-червячных двухступенчатых редукторов и мотор-редукторов должны соответствовать приведенным в табл.

Источник

Выбираем мотор редуктор правильно

Итак, стоит, прежде всего, начать с того, что мотором редуктором называют агрегат, который совмещает в себе и электродвигатель или редуктор. Их комбинация и является мотором редуктором. Такое устройство применяется в самых различных отраслях промышленности, во многом благодаря тому, что такой мотор очень прост в обслуживании, компактному размеру. Кроме того, высокий КПД и упрощенный монтаж.

Следующий шаг – нахождение придаточного отношения. Делается это тоже по формуле, которая выглядит следующим образом: i=n1/n2. В этой формуле n1 является частотой вращения двигателя, имеющего электрический тип, иными словами количество оборотов в минуту.

Далее необходимо определить сервис-фактор или по-другому, коэффициент эксплуатационный. Здесь нужно руководствоваться типом нагрузки и количеством часов в сутки, а также планируемых остановок.

Словом, для того, чтобы правильно подобрать мотор-редуктор, необходимо учитывать такие технические характеристики, как:

Так, например, червячные редукторы используются при любом положение вала выходного. Что касается моделей цилиндрических и конических, то здесь применяются они чаще в горизонтальных плоскостях.

Для примера, рассмотрим мотор-редуктор 5МП50. Он имеет продолжительность работы до 24 часов в сутки, устанавливается преимущественно до тысячи метров над уровнем моря. При этом, окружающая среда должна быт неагрессивной, а температура чтобы колебалась от минус десяти до плюс сорока пяти градусов.

Читайте также:  Детонация 16 клапанного двигателя

Итак, если Вы знаете сколько нужно оборотов, какой должен быть крутящий момент, какова мощность двигателя и его сервис-фактор, то для Вас не составит труда выбрать необходимый мотор-редуктор, который бы полностью подходил по Ваши требования. Далее необходимо убедиться, что не будет никаких затруднений с выполнением эксплуатационных требований. Также нужно провести сравнение габаритных размеров и присоединительных. Нужно точно знать, что выбранного пространства хватит, для того, чтобы вмонтировать оборудование.

Мы готовы помочь в подборе мотор-редуктора

Если вдруг у Вас возникли сложности в подборе мотора-редуктора, не стоит отчаиваться, мы всегда придем Вам на помощь. Специалисты электротехнической компании «ЭНЕРГОПУСК» смогут проконсультироваться Вас по вопросу о выборе мотор-редуктора. Мы давно работаем в этой области и знаем все точности этих устройств, значит исходя из Ваших потребностей, обязательно подберем для Вас подходящий вариант. Конечно, мы также осуществим и расчеты, точные и правильные, благодаря чему выбор редуктора станет сущим пустяком.

Так, например, мы сможем детально рассказать о том, в чем особенность мотора-редуктора NMRV, также расскажем, чем отличается от других, и где пригодится редуктор 3МП50. И еще множество других вопросов, на которые с легкостью ответят наши специалисты.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Источник

Кинематический и силовой расчет редуктора. Расчет крутящих моментов на валах редуктора

Выбор мотор-редуктора


При выборе конкретной модели мотор-редуктора учитываются следующие технические характеристики:

Тип редуктора

Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:

Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).

Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.

Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.

Цилиндрический соосный под любым углом. Оси валов располагаются в одной плоскости.

В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.

ВАЖНО! Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений.

Таблица 1. Классификация редукторов по числу ступеней и типу передачи

Тип редуктора Число ступеней Тип передачи Расположение осей
Цилиндрический 1 Одна или несколько цилиндрических Параллельное
2 Параллельное/соосное
3
4 Параллельное
Конический 1 Коническая Пересекающееся
Коническо-цилиндрический 2 Коническая Цилиндрическая (одна или несколько) Пересекающееся/скрещивающееся
3
4
Червячный 1 Червячная (одна или две) Скрещивающееся
1 Параллельное
Цилиндрическо-червячный или червячно-цилиндрический 2 Цилиндрическая (одна или две) Червячная (одна) Скрещивающееся
3
Планетарный 1 Два центральных зубчатых колеса и сателлиты (для каждой ступени) Соосное
2
3
Цилиндрическо-планетарный 2 Цилиндрическая (одна или несколько) Планетарная (одна или несколько) Параллельное/соосное
3
4
Коническо-планетарный 2 Коническая (одна) Планетарная (одна или несколько) Пересекающееся
3
4
Червячно-планетарный 2 Червячная (одна) Планетарная (одна или несколько) Скрещивающееся
3
4
Волновой 1 Волновая (одна) Соосное

Номинальный крутящий момент на выходном валу

Конструктивные исполнения по способу монтажа.

Условные изображения и цифровые обозначения конструктивных исполнений редукторов и мотор-редукторов общемашиностроительного применения: (изделий) по способу монтажа установлены ГОСТ 30164-94. В зависимости от конструкции редукторы и мотор-редукторы разбиты на следующие группы:

а) соосные; б) с параллельными осями; в) с пересекающимися осями; г) со скрещивающимися осями.

К группе а) отнесены и изделия с параллельными осями, у которых концы входного и выходного валов направлены в противоположенные стороны, а их межосевое расстояние составляет не более 80мм. К группам б) и в) отнесены также вариаторы и вариаторные приводы. Условные изображения и цифровые обозначения конструктивных исполнений по способу монтажа характеризуют конструктивные исполнения корпусов, а также расположение в пространстве поверхностей крепления валов или осей валов.

Условное обозначение изделий группы а) состоит из трех цифр:

Первая — конструктивное исполнение корпуса (1 – на лапах, 2 – с фланцем); Вторая — расположение поверхности крепления (1 — пол, 2 – потолок, 3 – стена); Третья – расположение конца выходного вала (1 – горизонтальный влево, 2 — горизонтальный вправо, 3 – вертикальный вниз, 4 — вертикальный верх).

Передаточное число [I]

Передаточное число редуктора рассчитывается по формуле:

где N1 – скорость вращения вала (количество об/мин) на входе; N2 – скорость вращения вала (количество об/мин) на выходе.

Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.

Таблица 2. Диапазон передаточных чисел для разных типов редукторов

Тип редуктора Передаточные числа
Червячный одноступенчатый 8-80
Червячный двухступенчатый 25-10000
Цилиндрический одноступенчатый 2-6,3
Цилиндрический двухступенчатый 8-50
Цилиндрический трехступенчатый 31,5-200
Коническо-цилиндрический одноступенчатый 6,3-28
Коническо-цилиндрический двухступенчатый 28-180

ВАЖНО! Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин. Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.

Крутящий момент редуктора

Крутящий момент на выходном валу [M2] – вращающий момент на выходном валу. Учитывается номинальная мощность [Pn], коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.

Номинальный крутящий момент [Mn2] – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.

Необходимый крутящий момент [Mr2] – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.

Расчетный крутящий момент [Mc2] – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:

Mc2 = Mr2 x Sf ≤ Mn2

где Mr2 – необходимый крутящий момент; Sf – сервис-фактор (эксплуатационный коэффициент); Mn2 – номинальный крутящий момент.

Эксплуатационный коэффициент (сервис-фактор)

Сервис-фактор (Sf) рассчитывается экспериментальным методом. В расчет принимаются тип нагрузки, суточная продолжительность работы, количество пусков/остановок за час эксплуатации мотор-редуктора. Определить эксплуатационный коэффициент можно, используя данные таблицы 3.

Таблица 3. Параметры для расчета эксплуатационного коэффициента

Тип нагрузки К-во пусков/остановок, час Средняя продолжительность эксплуатации, сутки
2-8 9-16h 17-24
Плавный запуск, статичный режим эксплуатации, ускорение массы средней величины 0,75 1 1,25 1,5
10-50 1 1,25 1,5 1,75
80-100 1,25 1,5 1,75 2
100-200 1,5 1,75 2 2,2
Умеренная нагрузка при запуске, переменный режим, ускорение массы средней величины 1 1,25 1,5 1,75
10-50 1,25 1,5 1,75 2
80-100 1,5 1,75 2 2,2
100-200 1,75 2 2,2 2,5
Эксплуатация при тяжелых нагрузках, переменный режим, ускорение массы большой величины 1,25 1,5 1,75 2
10-50 1,5 1,75 2 2,2
80-100 1,75 2 2,2 2,5
100-200 2 2,2 2,5 3

Мощность привода

Правильно рассчитанная мощность привода помогает преодолевать механическое сопротивление трения, возникающее при прямолинейных и вращательных движениях.

Элементарная формула расчета мощности [Р] – вычисление соотношения силы к скорости.

При вращательных движениях мощность вычисляется как соотношение крутящего момента к числу оборотов в минуту:

где M – крутящий момент; N – количество оборотов/мин.

Выходная мощность [P2] вычисляется по формуле:

где P – мощность; Sf – сервис-фактор (эксплуатационный коэффициент).

ВАЖНО! Значение входной мощности всегда должно быть выше значения выходной мощности, что оправдано потерями при зацеплении:

Нельзя делать расчеты, используя приблизительное значение входной мощности, так как КПД могут существенно отличаться.

Коэффициент полезного действия (КПД)

Расчет КПД рассмотрим на примере червячного редуктора. Он будет равен отношению механической выходной мощности и входной мощности:

где P2 – выходная мощность; P1 – входная мощность.

ВАЖНО! В червячных редукторах P2

Чем выше передаточное отношение, тем ниже КПД.

На КПД влияет продолжительность эксплуатации и качество смазочных материалов, используемых для профилактического обслуживания мотор-редуктора.

Таблица 4. КПД червячного одноступенчатого редуктора

Передаточное число КПД при aw, мм
40 50 63 80 100 125 160 200 250
8,0 0,88 0,89 0,90 0,91 0,92 0,93 0,94 0,95 0,96
10,0 0,87 0,88 0,89 0,90 0,91 0,92 0,93 0,94 0,95
12,5 0,86 0,87 0,88 0,89 0,90 0,91 0,92 0,93 0,94
16,0 0,82 0,84 0,86 0,88 0,89 0,90 0,91 0,92 0,93
20,0 0,78 0,81 0,84 0,86 0,87 0,88 0,89 0,90 0,91
25,0 0,74 0,77 0,80 0,83 0,84 0,85 0,86 0,87 0,89
31,5 0,70 0,73 0,76 0,78 0,81 0,82 0,83 0,84 0,86
40,0 0,65 0,69 0,73 0,75 0,77 0,78 0,80 0,81 0,83
50,0 0,60 0,65 0,69 0,72 0,74 0,75 0,76 0,78 0,80
Читайте также:  Как определить какой двигатель

Таблица 5. КПД волнового редуктора

Передаточное число 63 80 100 125 160 200 250 315
КПД 0,83 0,82 0,80 0,78 0,75 0,72 0,70 0,65

Таблица 6. КПД зубчатых редукторов

Тип редуктора КПД
Цилиндрический и конический одноступенчатый 0,98
Цилиндрический и коническо-цилиндрический двухступенчатый 0,97
Цилиндрический и коническо-цилиндрический трехступенчатый 0,96
Цилиндрический и коническо-цилиндрический четырехступенчатый 0,95
Планетарный одноступенчатый 0,97
Планетарный двухступенчатый 0,95

Как выбрать редуктор

МЕТОДИКА ВЫБОРА РЕДУКТОРА 1. Общие положения 1.1. Выбор редуктора заключается в определении его типоразмера на основании:

Для специальных редукторов (подъемно — транспортных машин, кранов и т. д.) указанные параметры определены для фактических условий их работы. 1.3. Значения расчетных параметров для выбора редуктора определяются по настоящей методике при этом необходимо учитывать следующие факторы:

Таблица 3. Коэффициент количества пусков K3

Количество пусков в час 1 160
Коэффициент характеристики двигателя, K1 1 1,0 1,2 1,3 1,5 1,6 2,0
1,25 1,0 1,1 1,2 1,3 1,4 1,7
1,5 1,0 1,07 1,1 1,15 1,25 1,4
1,8 1,0 1,05 1,05 1,07 1,1 1,2

Таблица 4. Коэффициент продолжительности включения KПВ

Таблица 5. Степень толчкообразности ведомых машин

Характер нагрузки Ведомая машина
А Генераторы, элеваторы, центробежные компрессоры, равномерно загружаемые конвейеры, смесители жидких веществ, насосы центробежные, шестеренные, винтовые, стреловые механизмы, воздуходувки, вентиляторы, фильтрующие устройства.
Б Водоочистные сооружения, неравномерно загружаемые конвейеры, лебедки, тросовые барабаны, ходовые, поворотные, подъемные механизмы подъемных кранов, бетономешалки, печи, трансмиссионные валы, резаки, дробилки, мельницы, оборудование для нефтяной промышленности.
В Пробойные прессы, вибрационные устройства, лесопильные машины, грохот, одноцилиндровые компрессоры.
Г Оборудование для производства резинотехнических изделий и пластмасс, смесительные машины и оборудование для фасонного проката.

2.2.5. Подбор редукторов производится в следующей последовательности:

Примечание: Для специальных редукторов коэффициент условий работы КУР=1.

ТВЫХ.ТАБ. > ТВЫХ.ТРЕБ., (5) где ТВЫХ. ТАБ — номинальный крутящий момент из таблиц каталога.

ТВЫХ.ТАБ. > ТВЫХ.РАСЧ., (6)
2.3. Проверка радиальных консольных нагрузок, приложенных в середине посадочных частей концов входного и выходного валов редуктора, производится следующим образом: Определяется расчетная величина консольных нагрузок по известным величинам требуемых нагрузок из соотношений для случаев не равенства единице коэффициента КУР: FВЫХ.РАСЧ. = FВЫХ.ТРЕБ.*КУР, (7) FВХ.РАСЧ. = FВХ.ТРЕБ.*КУР, (8) Проверяем выполнение условий: FВЫХ.ТАБ. > FВЫХ.РАСЧ., (9) FВХ.ТАБ. > FВХ.РАСЧ., (10) где FВЫХ. ТАБ, FВХ.ТАБ. — радиальные консольные нагрузки. Для специальных редукторов и редукторов общемашиностроительного применения с коэффициентом условий работы КУР=1 проверяется выполнение условий: FВЫХ.ТАБ. > FВЫХ.ТРЕБ., (11) FВХ.ТАБ. > FВХ.ТРЕБ., (12) При невыполнении условий (9) … (12) выбирается больший типоразмер редуктора.

2.4. Проверка условий отсутствия перегрева редуктора. Проверка производится определением выполнения условия: РВХ.РАСЧ.? РТЕРМ. * КТ, кВт, (13) где КТ — температурный коэффициент, значения которого приведены в таблице 6. РТЕРМ — термическая мощность (кВт), значение которой приводятся в паспортах, технических условиях на редукторы, каталогах.

Таблица 6. Температурный коэффициент КТ

Способ охлаждения Температура окружающей среды, Со Продолжительность включения, ПВ %.
100 80 60 40 25
Редуктор без постороннего охлаждения. 10 1,12 1,34 1,57 1,79 2,05
20 1,0 1,2 1,4 1,6 1,8
30 0,88 1,06 1,23 1,41 1,58
40 0,75 0,9 1,05 1,21 1,35
50 0,63 0,76 0,88 1,01 1,13
Редукторе со спиралью водяного охлаждения. 10 1,1 1,32 1,54 1,76 1,98
20 1,0 1,2 1,4 1,6 1,8
30 0,9 1,08 1,26 1,44 1,62
40 0,85 1,02 1,19 1,36 1,53
50 0,8 0,96 1,12 1,29 1,44
Редуктор охлаждается обдуванием. 10 1,15 1,38 1,61 1,84 2,07
20 1,0 1,2 1,4 1,6 1,8
30 0,9 1,08 1,26 1,44 1,82
40 0,8 0,96 1,12 1,29 1,44
50 0,7 0,84 0,98 1,12 1,26
Редуктор с обдуванием и водяным охлаждением. 10 1,12 1,34 1,57 1,79 2,05
20 1,0 1,2 1,4 1,6 1,8
30 0,92 1,1 1,29 1,47 1,66
40 0,83 1,0 1,16 1,33 1,5
50 0,78 0,94 1,09 1,25 1,4

3.2. Выбор редуктора.

КУР = К1*К2*К3*КПВ*КРЕВ ; КУР = 1,5*1,12*1,1*1*1=1,848 ;

ТВЫХ.РАСЧ. = 4000*1,848 = 7392 Нxм FВХ.РАСЧ. = 1000*1,848 = 1848 Н FВЫХ.РАСЧ. = 11000*1,848 = 20328 Н

Согласно рекомендации п. 2.1. выбираем двухступенчатый редуктор. Из каталога находим: редуктор цилиндрический двухступенчатый Ц2У-315НМ.

РВХ.РАСЧ.? 128*0,88 = 112,6 кВт,
То есть условие (13) выполнено.

В случае невыполнения условия (13) при выбранном способе охлаждения используются другие способы охлаждения.

Взрывозащищенные исполнения мотор-редукторов

Мотор-редукторы данной группы классифицируются по типу взрывозащитного исполнения:

Вращающий момент при помощи редуктора

Конструктивные исполнения по способу монтажа.

Условные изображения и цифровые обозначения конструктивных исполнений редукторов и мотор-редукторов общемашиностроительного применения: (изделий) по способу монтажа установлены ГОСТ 30164-94. В зависимости от конструкции редукторы и мотор-редукторы разбиты на следующие группы:

а) соосные; б) с параллельными осями; в) с пересекающимися осями; г) со скрещивающимися осями.

К группе а) отнесены и изделия с параллельными осями, у которых концы входного и выходного валов направлены в противоположенные стороны, а их межосевое расстояние составляет не более 80мм. К группам б) и в) отнесены также вариаторы и вариаторные приводы. Условные изображения и цифровые обозначения конструктивных исполнений по способу монтажа характеризуют конструктивные исполнения корпусов, а также расположение в пространстве поверхностей крепления валов или осей валов.

Показатели надежности

Показатели надежности мотор-редукторов приведены в таблице 7. Все значения приведены для длительного режима эксплуатации при постоянной номинальной нагрузке. Мотор-редуктор должен обеспечить 90% указанного в таблице ресурса и в режиме кратковременных перегрузок. Они возникают при пуске оборудования и превышении номинального момента в два раза, как минимум.

Таблица 7. Ресурс валов, подшипников и передач редукторов

Показатель Тип редуктора Значение,ч
90% ресурса валов и передач Цилиндрический, планетарный, конический, коническо-цилиндрический 25000
90% ресурса подшипников Червячный, волновой, глобоидный 10000
Цилиндрический, планетарный, конический, коническо-цилиндрический 12500
Червячный 5000
Глобоидный, волновой

Как выбрать редуктор по мощности двигателя

Конструктивные исполнения по способу монтажа.

Условные изображения и цифровые обозначения конструктивных исполнений редукторов и мотор-редукторов общемашиностроительного применения: (изделий) по способу монтажа установлены ГОСТ 30164-94. В зависимости от конструкции редукторы и мотор-редукторы разбиты на следующие группы:

а) соосные; б) с параллельными осями; в) с пересекающимися осями; г) со скрещивающимися осями.

К группе а) отнесены и изделия с параллельными осями, у которых концы входного и выходного валов направлены в противоположенные стороны, а их межосевое расстояние составляет не более 80мм. К группам б) и в) отнесены также вариаторы и вариаторные приводы. Условные изображения и цифровые обозначения конструктивных исполнений по способу монтажа характеризуют конструктивные исполнения корпусов, а также расположение в пространстве поверхностей крепления валов или осей валов.

Условное обозначение изделий группы а) состоит из трех цифр:

Первая — конструктивное исполнение корпуса (1 – на лапах, 2 – с фланцем); Вторая — расположение поверхности крепления (1 — пол, 2 – потолок, 3 – стена); Третья – расположение конца выходного вала (1 – горизонтальный влево, 2 — горизонтальный вправо, 3 – вертикальный вниз, 4 — вертикальный верх).

Источник

Ответы на популярные вопросы
Adblock
detector