Мощность двигателя подводных лодок

Содержание
  1. Дизельная подводная лодка
  2. Содержание
  3. Предшественники
  4. Недостатки и альтернативы
  5. Дальнейшее развитие
  6. Субмарины нового поколения
  7. Акула (проект 941) — самая большая подводная лодка в мире: история создания, технические характеристики, основное вооружение
  8. История создания и дата начала работы над проектом
  9. Основные цели и задания
  10. Конструкционная специфика корпуса
  11. Компоновка корпуса
  12. Реакторный и турбинные отсеки
  13. Три носовых отсека
  14. Три прилегающих к главному командному пункту
  15. Надежно изолированный носовой корпус торпедного отсека
  16. Корпус для размещения ГКП и радиотехнического оборудования
  17. Кормовой переходной корпус общей длиной 30 метров
  18. Вооружение
  19. Баллистический ракетный комплекс Д-19 класса Р-39 «Вариант»
  20. Ракетный комплекс Д-19У с 20-ю баллистическими ракетами Р-39УТТХ «Барк»
  21. Технические характеристики
  22. Турбина
  23. Движитель
  24. Резервные средства движения
  25. Радиоэлектронное оборудование
  26. Характеристики скоростей полного хода и водоизмещения
  27. Глубины погружения
  28. Размеры
  29. Достоинства и недостатки
  30. Размеры подводных лодок в сравнении
  31. Применение в боевых условиях

Дизельная подводная лодка

Дизель-электрические подводные лодки (ДПЛ, ДЭПЛ) — подводные лодки, оснащённые Дизельным двигателем для надводного хода и электромоторами для передвижения под водой. Первые дизель-электрические субмарины были созданы в начале XX века, когда были созданы сравнительно совершенные дизельные двигатели, довольно быстро вытеснившие из подводного кораблестроения бензиновые и керосиновые мотора, а также паровые установки, применявшимся ранее.

Содержание

Предшественники

До появления ДЭПЛ существовали подводные лодки на мускульной тяге (H.L.Hunley, лодка Шильдера и многие аналогичные субмарины раннего периода), чисто-электрические аккумуляторные («Жимнот», современные мини-субмарины), с единым неатомным двигателем, в том числе — чисто-дизельные, бензиновые («Почтовый» Джевецкого) и с пневматическим двигателем (лодка Александровского), паро-электрические («Нарвал» Лобефа).

Недостатки и альтернативы

Главным недостатком дизель-электрической схемы является средство достижения её же главных достоинств — фактическое наличие двух двигательных схем: дизельных двигателей (с запасом солярки) и электромоторов (требующих мощных аккумуляторных батарей, определяющих подводную автономность корабля). Это приводило к повышенной сложности внутреннего устройства лодки, увеличению численности экипажа (для обслуживания дизелей, электромоторов, аккумуляторов), а следовательно — к ухудшению и так не слишком комфортных условий обитания подводников. Поэтому параллельно со строительством ДЭПЛ во многих странах производился поиск схемы «двигателя единого хода» для надводного и подводного движения.

Параллельно шло развитие проектов, устраняющих ещё один недостаток дизель-электрической схемы — сравнительно низкую подводную скорость, обусловленную небольшим ресурсом аккумуляторных батарей и более низкой, по сравнению с дизелями, мощностью электромоторов. Самым успешным вариантом этого направления было применение парогазотурбинной энергетической установки, работающей на перекиси водорода, реализованной в проектах немецкого конструктора Гельмута Вальтера времён Второй мировой войны. После 1945 года разработка парогазотурбинных двигателей некоторое время велась в Великобритании и СССР, однако ввиду высокой пожароопасности от этой концепции отказались в пользу атомной силовой установки.

Дальнейшее развитие

После появления в 1950-е годы атомных подводных лодок, стало принято подразделять по типу энергетической установки на две основные категории: атомные и неатомные.

Обычно, к группе неатомных лодок относят дизель-электрические и дизель-стирлинг-электрические (ДСЭПЛ) подводные лодки.

В чистом виде дизель-электрическая схема движения в проектах подводных лодок XXI века не применяется. Её развитием стали

В настоящее время США и Великобритания полностью прекратили строительство неатомных подводных лодок. Остальные страны имеют или комбинированный атомно-неатомный подводный флот, или, что чаще, подводный флот полностью состоит из дизель-электрических субмарин разной степени совершенства.

Источник

Субмарины нового поколения

Еще 15 лет назад ученые и промышленность вели агитацию за внедрение воздухонезависимой энергетики на подводные лодки. Сегодня в мире уже накоплен опыт эксплуатации различных типов установок, который показывает, что востребованными оказались два типа – с двигателями Стирлинга и с электрохимическими генераторами (ЭХГ). Другие варианты остались «нишевыми» (турбина MESMA компании DCNS) или так и не вышли из лабораторий. Российские военные моряки и проектанты выбрали установку с ЭХГ, сделав ставку на простоту и безопасность эксплуатации, а также невысокие требования к системе базирования.

Воздухонезависимая энергетическая установка (ВНЭУ) повышает скрытность подлодки, но платой за это становится рост стоимости корабля и всего его жизненного цикла, повышение требований к инфраструктуре и подготовке экипажей, и это отнюдь не полный список. Ни одна из сегодняшних ВНЭУ не является идеальной во всех аспектах – каждая из них имеет свои достоинства и недостатки. Флот каждой страны по-разному относится к этим «плюсам и минусам» – ведь каждый флот решает свои задачи, действует в своих условиях и, самое главное, имеет разные финансовые возможности. Это приводит к спросу на корабли с разными типами ВНЭУ и даже на подлодки вовсе без ВНЭУ.

Установку нельзя считать идеальной по скрытности, но она вполне адекватна особенностям Балтийского моря. Его сложная география и интенсивное судоходство делают ненужным снижение акустического поля подлодки до абсолютного минимума, а «теснота» Балтики требует создания небольших кораблей, которым как раз подходят не очень мощные двигатели Стирлинга. Видимо, по этим же причинам шведские подлодки были в свое время выбраны ВМС Сингапура: условия в Малаккском проливе и прилежащих к нему акваториях весьма схожи с балтийскими.

Причины приобретения Японией лицензии на шведскую ВНЭУ менее очевидны. Японские подлодки действуют не только во внутренних морях, но и в океане. Трудно предположить, что японские компании не справились бы с созданием ВНЭУ и инфраструктуры, да и военный бюджет Японии нельзя назвать чрезвычайно ограниченным, однако Морские силы самообороны Японии предпочли лицензировать существующую установку, а не разрабатывать собственную. В результате малая мощность двигателей Стирлинга заставила японских проектантов «умножить ВНЭУ на два» – на более крупных японских подлодках установка состоит из четырех двигателей, а не из двух, как на шведских.

Читайте также:  Дэу автоматической коробкой передач

Второй тип ВНЭУ, электрохимические генераторы, прочно ассоциируется с германскими проектами подлодок типов 212А и 214. Немецкие проектанты создали подлодку с почти что «абсолютной» ВНЭУ – бесшумной, низкотемпературной, на выходе процесса – обычная вода. Плата за это – сложность и высокая стоимость установки, существенный рост размеров корабля, высокие требования к береговой инфраструктуре.

Процесс создания этой ВНЭУ оказался весьма длительным. От начала работы до сдачи боевого корабля прошло более 25 лет, и это несмотря на давно и целенаправленно идущие в Европе работы по внедрению водородной энергетики во все сферы техники.

Основной вопрос установок с ЭХГ – хранение водорода. Выбранное германскими проектантами интерметаллидное хранение водорода (хранение водорода в сплаве металла) позволяет обеспечить высокую безопасность, но требует больших весов и объемов, что не позволяет создавать лодки с большой подводной автономностью – для лодок типов 212А она составляет около двух недель. Впрочем, для ВМС Германии и Италии, действующих на Балтике, в Северном море и в Средиземноморье, эта величина вполне достаточна. Германские и итальянские субмарины большую часть времени действуют в условиях господства на море союзных сил, в силу чего они могут использовать скрытные режимы ВНЭУ не постоянно, а лишь при необходимости.

Аналогичную ВНЭУ имеют экспортные лодки типа 214. Их подводная автономность оказалась вполне достаточной для Португалии, Греции и Турции, чьи ВМС действуют в тех же условиях Средиземноморья. Страны Европы, которые покупают подлодки с такой установкой, с одной стороны, могут опираться на уже созданную инфраструктуру производства и хранения водорода, а с другой – новые пользователи эту инфраструктуру расширяют.

В Восточной Азии подлодки типа 214 и германскую версию ВНЭУ выбрали пока только ВМС Южной Кореи. Замкнутый театр, сравнительно небольшие отстояния районов патрулирования от собственных баз, наличие крупных собственных и союзных сил – все это имеет много общего с ситуацией в Средиземном море.

Таким образом, ВНЭУ с ЭХГ и интерметаллидным хранением водорода имеет множество преимуществ с «лодочной» точки зрения, но не позволяет создавать подлодки с подводной автономностью свыше двух недель и требует наличия дорогостоящей водородной инфраструктуры.

ТИПЫ РИФОРМИНГА

Указанные выше проблемы заставили разработчиков искать новые решения. Одним из ответов стало хранение водорода в виде химических соединений с последующим расщеплением этих соединений и извлечением из них водорода (риформингом). Наиболее известны риформинг спиртов (метилового и этилового) и дизельного топлива. Передача на подлодку и хранение на ее борту этих жидкостей значительно проще, чем водорода.

Получение водорода из спиртов достаточно несложно, этот процесс дает мало углекислого газа (выхлопа). Однако метиловый спирт ядовит, да и этиловый спирт, по замечанию опытного германского подводника, «представляет для экипажа не меньшую угрозу, чем метиловый». Цистерны, арматура и трубопроводы со спиртом требуют тщательной герметизации и контроля как при эксплуатации, так и при погрузке этого топлива. Для использования спиртов необходима дорогостоящая береговая инфраструктура.

С точки зрения эксплуатации наиболее привлекателен риформинг дизельного топлива. Дизельное топливо на подлодках используется давно, оно недорого и вполне безопасно, все военно-морские базы мира имеют нужную инфраструктуру. На лодке хранится всего один вид топлива – как для дизель-генераторов (при их наличии), так и для ВНЭУ. Это ощутимая экономия, потому что за 30 лет службы корабля расходы на топливо «съедают» львиную долю эксплуатационных затрат.

РАБОТЫ ПО РИФОРМИНГУ

Компания HDW начала работы по установкам риформинга еще в 90-е годы прошлого века, в их результате был создан опытный образец риформера метанола. Но размер этой установки не позволял безболезненно интегрировать ее в корабли существующих проектов, а экономический кризис заставил ВМС Германии отказаться от финансирования этого проекта. Сегодня компания TKMS (наследник HDW) продолжает работы по этому риформеру для экспортных лодок типа 216. Финансовые кризисы существенно влияют на судьбу новой техники, а реализация перспективных разработок зависит от возможности найти зарубежного заказчика.

Весьма амбициозный испанский проект подводной лодки S-80 («Isaac Peral») основан на использовании ЭХГ и риформера этилового спирта. Испанские проектанты успешно создали широкую мировую кооперацию и получили вполне обнадеживающие первые результаты, в том числе работающий стендовый образец риформера малой мощности. Однако ряд проблем в проекте самой подлодки и неизбежные сложности при переходе от стендовых образцов к реальной технике привели к срыву сроков реализации проекта. Это, в свою очередь, создало проблему с его финансированием. Будет ли этот проект реализован – еще предстоит увидеть. Интересно отметить, что ВМС Испании пошли путем разработки оригинального проекта лодки, включая создание «с нуля» установки риформинга этанола со всеми вытекающими сложностями, тогда как ВМС Португалии предпочли купить готовые субмарины типа 214. Ближайшие соседи, оказывается, могут иметь заметно разные ценности.

В 2014 году компания DCNS объявила о создании и успешных испытаниях стендового образца «ЭХГ второго поколения» с риформером дизельного топлива. Эта установка предлагается для подлодок типа «Scorpene» – считается, что ее применение доведет подводную автономность этих лодок до трех недель и более. Другой проект DCNS, более крупная субмарина, известная под именами «SMX Ocean» и «Shortfin Barracuda», был выбран ВМС Австралии для своей программы SEA-1000. Экспортный заказ, вероятно, позволит компании DCNS довести свою ВНЭУ до работоспособного состояния.

В Индии также ведутся работы по созданию ВНЭУ на основе риформинга боргидрида натрия для подводных лодок типа «Kalvari».

Военно-морской флот России еще в 90-х годах сделал выбор в пользу ЭХГ, а в 2008 году – в пользу системы риформинга дизельного топлива. Условия, в которых действуют российские подлодки, заметно отличаются от европейских. Это открытые театры (Северный и Тихоокеанский), десяток баз подлодок на значительном расстоянии друг от друга, в том числе в малообжитых районах с суровым климатом. Отсюда и требование к снижению затрат на создание и содержание инфраструктуры. Лодки далеко уходят от баз и большую часть времени находятся под угрозой со стороны многочисленного и умелого противника, то есть должны длительно находиться в скрытных режимах. Все эти проблемы может решить только риформинг дизтоплива.

Читайте также:  Замена мкпп коробки передач

Источник

Акула (проект 941) — самая большая подводная лодка в мире: история создания, технические характеристики, основное вооружение

Уже в Первую Мировую войну подводные лодки (ПЛ) показали свою эффективность в борьбе за господство на море. Ключевая особенность данных кораблей — скрытность, позволяющая наносить мощные удары по наиболее уязвимым целям противника.

Широкое распространение подводные лодки получили во Вторую Мировую, развивались и средства борьбы против них. В послевоенное время официально известно лишь о двух случаях боевого применения подлодок против надводных кораблей. Однако они остаются на вооружении 33 государств мира, становясь неотъемлемой частью флота.

Проект 941 «Акула» (в классификации НАТО — SSBN «Typhoon», «Тайфун») — атомные тяжелые подводные ракетные крейсеры стратегического назначения (АПРК, РПКСН). Разработаны в СССР, перешли на вооружение российского флота. Подлодки данного типа считаются самыми большими в мире.

История создания и дата начала работы над проектом

Техническое задание на разработку проекта 941 выдано в 1972 году. Ориентир делался на соперничество с США, где велась разработка над атомной подлодкой «Огайо». В итоге первые корабли обоих проектов были заложены почти одновременно в 1976.

Пр. 941 изначально разрабатывался под межконтинентальные баллистические ракеты Р-39. Данный аспект потребовал от лодки-носителя значительных габаритов. Спуск на воду первого подводного тяжелого крейсера ТК-208 состоялся 29 сентября 1980. В строй подлодка вступила 12 декабря 1981.

Первоначально план разработки ориентировался на выпуск 12 подводных лодок. Позже это количество сократили до 10 субмарин. В период с 1981 по 1989 годы заложено и спущено на воду 6 таких кораблей. Остальные так и не были изготовлены.

Три из поступивших на вооружение подлодки утилизированы в середине 2000-х в ходе сотрудничества с США. ТК-208 «Дмитрий Донской» уже после смерти главного конструктора С. Н. Ковалева модернизирован под новые ракеты «Булава». Сколько он будет оставаться еще в строю — неизвестно.

Две оставшиеся лодки ТК-17 и ТК-20 подлежали утилизации, однако летом 2019 было заявлено об их переоборудовании под крылатые ракеты. Ориентировочное количество — 200 штук.

Основные цели и задания

Подводные лодки проекта 941 Акула относятся к атомным крейсерам стратегического назначения. Помимо базового вооружения они несут на борту межконтинентальные твердотопливные баллистические ракеты. Мобильность таких установок позволяет уходить из-под атаки противника и выходить на нужную точку обстрела.

В тактические задачи данной атомной подводной лодки (АПЛ) входило патрулирование, участие в учениях, испытания новых вооружений. Ввиду своих габаритов подлодка не рассчитана на активное участие в морских сражениях в составе флотов.

Конструкционная специфика корпуса

Компоновка корпуса

Общая конструкция подводных лодок проекта 941 «Акула» разделена на пять отдельных прочных корпусов, объединенных одним внешним. Два из них считаются ключевыми, диаметр в некоторых местах доходит до 10 м. В передней части между ними располагаются ракетные шахты.

Основные корпусы имеют переходы в передней, центральной и задней части лодки. Всего предусмотрено 19 водонепроницаемых отсеков. У основания рубки имеются две всплывающие камеры, рассчитанные на эвакуацию всего экипажа.

Кроме двух основных корпусов имеются три дополнительных — торпедный отсек, модуль управления и механический. Все они изолированы друг от друга, что повышает пожаробезопасность и выживаемость подлодки в экстренных ситуациях.

Внешний легкий корпус стальной, имеет нерезонансное звукоизолирующее и противолокационное резиновое покрытие. Обшивка прочных корпусов выполнена из титановых сплавов. Особое внимание уделено рубке — верхние ограждения позволяют пробивать полярный лед до 2,5 м толщиной.

Кормовое оперение подводной лодки крестообразное, имеет горизонтальные рули за винтами. Передние горизонтальные рули убираются.

Для экипажа предусмотрены комфортные условия размещения. Имеется салон для отдыха, спортивный зал, бассейн 4х2х2 м, солярий, сауна, «живой» уголок, две кают-компании для офицеров и матросов. Рядовые размещены в малогабаритных кубриках, офицеры — в двух- и четырехместных каютах с умывальниками, телевизорами и кондиционерами.

Реакторный и турбинные отсеки

Реакторный и турбинные отсеки находятся в кормовой части в двух основных корпусах. Между турбинными имеется отдельная кормовая шлюзовая рубка.

Три носовых отсека

Два носовых отсека основных корпусов — гидроакустические. Между ними в изолированном корпусе находится торпедный отсек. Прилегающие отсеки основной части — ракетные.

Три прилегающих к главному командному пункту

Три прилегающие к центральному посту отсека обеспечивают живучесть лодки. Здесь же располагаются всплывающие камеры для эвакуации.

Надежно изолированный носовой корпус торпедного отсека

Торпедный отсек изолирован от основных корпусов прочной обшивкой. По заявлению главного конструктора С. Н. Ковалева ситуация, произошедшая с атомной подлодкой «Курск» после взрыва торпеды, на «Акулах» не имела бы таких катастрофических последствий.

Корпус для размещения ГКП и радиотехнического оборудования

Главный командный пост (ГКП) располагается в центральной части, в рубке. Имеет изолированный от других отсеков корпус. Сюда же выведено все радиотехническое оборудование, обеспечивающее управление лодкой.

Кормовой переходной корпус общей длиной 30 метров

Кормовой переходный корпус — технические отсеки, от реактора к турбинному отделению. Отдельного изолирования от общих отсеков не имеет, однако герметичное закрытие присутствует.

Читайте также:  Запуск трехфазного двигателя 380в

Вооружение

Вооружение подводных лодок проекта 941 делят на три категории:

Баллистические ракетные комплексы Д-19 — стратегическое вооружение подлодки. Для стрельбы торпедами (53-65К, СЭТ-65, САЭТ-60М, УСЭТ-80) и ракето-торпедами («Шквал», «Водопад») предусмотрено 6 пусковых аппаратов, калибр — 533 мм. Также через них допускается установка минных заграждений. Противовоздушная оборона лодки обеспечивается восемью ПЗРК «Игла-1».

Баллистический ракетный комплекс Д-19 класса Р-39 «Вариант»

Комплекс Д-19 разрабатывался специально для подводных лодок проекта 941. Состоит из 20 баллистических трехступенчатых ракет Р-39 «Вариант». Учитывая размеры и вес данных снарядов «Акула» — единственный тип подводных лодок, способный нести их на борту.

Запуск всех ракет может производится залпом, с небольшим интервалом между отдельными пусками. Допускается ведение огня с надводного положения, а также с глубины до 55 м. Погодные условия на запуски не влияют. Амортизационная ракетно-стартовая система снижает интервал между пусками и уровень производимого шума.

Ракетный комплекс Д-19У с 20-ю баллистическими ракетами Р-39УТТХ «Барк»

В 1986 ракетный комплекс подлодок «Акула» планировалось модернизировать под ракеты Р-39УТТХ «Барк». Данные снаряды должны были покрывать расстояние до 10 тыс. км, а также проходить через лед. Перевооружение должно было состояться в 2003, когда заканчивался срок эксплуатации Р-39. Однако в 1998 после неудачных испытаний было решено свернуть проект и разработать новую баллистическую ракету на твердом топливе — «Булаву».

Технические характеристики

Технические характеристики подводных лодок проекта 941 — самые выдающиеся в мире. Гигантские размеры в сочетании с безопасной схемой компоновки и огневой мощью делают каждый такой крейсер надежным инструментом ядерного сдерживания.

Ядерная энергетическая установка выполнена по блочному типу. Состоит из двух водо-водяных реакторов на тепловых нейтронах ОК-650. Тепловая мощность каждого — по 190 МВт, общая мощность на валу — 2х50000 л. с.

Турбина

Подводная лодка «Акула» имеет две паротурбинных установки. Каждая находится в кормовых отсеках основных корпусов, что повысило выживаемость подлодки. За счет двухкаскадной резинокордной амортизации и блочной компоновки обеспечивается виброизоляция агрегатов, что снижает общий шум.

Движитель

«Акула» имеет два низкооборотных семилопастных гребных винта с фиксированным шагом. Для снижения производимого шума винты находятся в кольцевых обтекателях (фенестронах).

Резервные средства движения

К резервным средствам движения подводных лодок проекта 941 относят два дизельных генератора АСДГ-800 по 800 кВт, два электродвигателя постоянного тока мощностью по 190 кВт и свинцово-кислотную аккумуляторную батарею. Для маневрирования в ограниченном пространстве предусмотрены две подруливающие установки с двигателями по 750 кВт и поворотными гребными винтами. Расположены они в носовой и кормовой части.

Радиоэлектронное оборудование

Радиоэлектронное оборудование и вооружение представлено следующими системами:

Также предусмотрены две всплывающие антенны буйкового типа. Они позволяют принимать сигналы, сообщения и целеуказания на глубине 150 м, а также при нахождении под льдами.

Характеристики скоростей полного хода и водоизмещения

Скоростные характеристики подводных лодок «Акула» имеют следующие показатели:

Надводное водоизмещение составляет 23200 т, подводное — 48000 т. Данные подлодки в шутку называют водовозами, поскольку при погружении половину их веса составляет балластная вода.

Глубины погружения

Подлодки проекта 941 способны погружаться до 500 м. Рабочая глубина составляет 400 м, радиосвязь обеспечивается на 150 м, запуск баллистических ракет — до 55 м.

Размеры

Размеры подводной лодки проекта 941 имеют следующие значения:

Благодаря этим параметрам «Акула» — самая большая подводная лодка в мире, созданная специально для переноса ракет Р-39. Численность экипажа составляет 160 человек, включая 52 офицера.

Достоинства и недостатки

С появлением высокоточных баллистических ракет стратегического назначения стационарные пусковые шахты стали терять позиции в вопросе нанесения гарантированного ответного удара. Атомные подводные крейсеры проекта 941 создавались с целью восстановления данного потенциала.

Достоинства подлодок «Акула» представлены тремя ключевыми аспектами:

Появление таких крейсеров на вооружении советского флота подтолкнуло США к подписанию договора ОСВ-2. Именно данные лодки обеспечили паритет мировых держав в Холодной войне, их фото до сих пор внушают уважение и страх перед возможной ядерной войной.

Недостатки проекта 941 имеют спорные основания. Высказываются претензии к размерам, вызванным низким качеством твердого топлива Р-39, ходовым свойствам и управляемости подлодки, шуме, высокой стоимости. В современной аналитике бытует мнение, что для СССР важнее было показать масштаб и мощь, чем практическую эффективность и целесообразность.

Однако сравнение ТТХ с зарубежными и отечественными аналогами показывает, что большая часть этих претензий не имеют существенных оснований. Определенные проблемы с уровнем шума и стоимостью действительно существуют, однако они находятся в допустимых пределах с поправкой на время разработки и соразмерность.

Размеры подводных лодок в сравнении

В качестве основного конкурента проекту 941 выделяют подводные лодки класса «Огайо» — серия кораблей в США, рассчитанная на стратегические ракеты. Оба проекта разрабатывались примерно в одно время.

По габаритам у «Огайо» размеры подводной лодки в сравнении ненамного уступают «Акуле» — 170,7 м длины, 12,8 м ширины и 11,1 осадка. Значительнее отличается водоизмещение — американская субмарина весит 16746 и 18750 тонн в надводном и подводном состоянии соответственно.

Несмотря на меньшие размеры американская подлодка несет 24 баллистические ракеты Trident II D5. Ее ключевое преимущество — модульная система отдельных агрегатов, что облегчает постепенную модернизацию подлодки.

Применение в боевых условиях

В боевых условиях корабли проекта 941 не применялись. Основное их участие — патрулирование в арктических водах, участие в испытаниях. В 1987 ТК-12 осуществил длительный высокоширотный поход в Арктику со сменой экипажей. В 1997 в ходе испытаний Северного флота с борта ТК-20 осуществлен залповый пуск 20 ракет Р-39.

Источник

Ответы на популярные вопросы
Adblock
detector