Напряжение питания шагового двигателя

Содержание
  1. оптимальное напряжение питания шагового двигателя рассчитать
  2. Расчёт напряжения питания шагового двигателя
  3. Расчёт напряжения питания шагового двигателя
  4. Расчёт напряжения питания шагового двигателя
  5. Какое напряжение должно быть у источника питания?
  6. Какое напряжение питания у моего Шагового двигателя?
  7. Вычисление максимального напряжения для заданной индуктивности шагового двигателя
  8. Вычисление сопротивления и мощности рассеивания ток-ограничивающих резисторов
  9. Популярные заблуждения о шаговых электродвигателях и их разъяснения
  10. Температура
  11. Микрошаговый режим
  12. Номинальное напряжение и напряжение питания
  13. Напряжение на шаговые двигатели
  14. Популярные вопросы
  15. Помогите с Linear Advance
  16. MK8 настройка в Marlin 1.0
  17. Чем 3D принтер отличается от 3D плоттера?
  18. Ответы
  19. Изучаем миниатюрный шаговый двигатель
  20. Знакомство
  21. Эксперимент №1. L293D + ATtiny44
  22. Полношаговый режим. Одна фаза
  23. Полношаговый режим. Две фазы
  24. Эксперимент №2. TMC2208 + ATtiny44
  25. Эксперимент №3. ATtiny44-драйвер
  26. Отбросим все предосторожности
  27. Выводы

оптимальное напряжение питания шагового двигателя рассчитать

ТЕХНИЧЕСКАЯ ПОДДЕРЖКА

маркировка двигателя контроллеры ШД серводрайверы стабилизаторы платы согласования датчики скачать

Оптимальное напряжение питания шагового двигателя зависит от индуктивности двигателя.

Помните, что ток в индуктивности отстает от напряжения, поэтому чем выше индуктивность обмоток Вашего двигателя, тем более высокое напряжение необходимо использовать для увеличения частоты вращения двигателя.

Диазапазон питающих напряжений двигателя должен находится в диапазоне от 4 до 25 значений напряжения питания двигателя (напряжение питания двигателя и индуктивность обмоток двигателя смотрите в документации на Ваш двигатель), параметры наиболее часто используемых двигателей можно посмотреть здесь.

При использовании напряжения питания со значением менее 4 от номинального, двигатель не будет вращаться, а будет только нагреваться, что приведет к его поломке.

Помните, что драйверы поддерживают двигатели с индуктивностью обмоток в диапазоне от 500 мкГн до 7 мГн.

Для точного расчета напряжения питания двигателя воспользуйтесь формулой:

32 х (индуктивность, в мГн) = напряжение питания, В DC

Например, если Ваш двигатель имеет индуктивность 2 мГн, то его питающее напряжение равно:

32 х (2) = 45,12 В DC

Источник

Расчёт напряжения питания шагового двигателя

Расчёт напряжения питания шагового двигателя

Расчёт напряжения питания шагового двигателя

Какое напряжение должно быть у источника питания?

Для того, чтобы рассчитать необходимое напряжение эмпирическим способом, возьмите источник питания с выходным напряжением например 24В или любой другой источник питания, который у вас имеется в наличии, и который будет выше необходимого минимума питания драйвера, подключите его к самой нагруженной оси станка. Погоняйте ось, и плавно увеличивайте скорость пока не определите максимальную скорость, на которой шаговый двигатель будет работать без пропуска шагов, для тестируемого источника питания.

Используя следующую формулу можно определить необходимое напряжение питания для этой оси:
(Скорость которая вам требуется ÷ (Скорость, которую вы получили * 0.9)) * (Тестовое напряжение) = Необходимое напряжение питания.

Пример: (300IPM ÷ (150IPM * 0.9)) * 24VDC = 53.3VDC

Примечание: Удостоверьтесь что полученное напряжение питания находится в допустимых пределах для вашего драйвера!

Какое напряжение питания у моего Шагового двигателя?

Некоторые шаговые двигатели имеют маркировку только сопротивления и допустимого тока.
Используем закон Ома: R * I = U (Сопротивление * Ток = Напряжение)
Пример: 1.1Ом x 2.8А = 3.08В

Вычисление максимального напряжения для заданной индуктивности шагового двигателя

Для того, чтобы вычислить максимальное напряжение, которое вам следует использовать в зависимости от индуктивности обмоток шагового двигателя используйте следующую формулу:
Максимальное напряжение = 1000 * SQRT(Индуктивность) где SQRT — это квадратный корень.
Пример, двигатель с 6мГн на фазу:
1000 * SQRT(0.006) = 77В Максимум.
Пример мотора с 2.5мГн:
1000 * SQRT(0.0025) = 50В Максимум.

Примечание: Не все произведённые двигатели одинаково работают.

Если вы используете эту формулу и двигатели кажутся вам слишком горячими, нужно уменьшить напряжение, пока температура не станет приемлемой. Шаговые двигатели разработаны для работы горячими, но не стоит их перегревать и нюхать горелую изоляцию. Многие шаговые двигатели рассчитаны на максимальную рабочую температуру до 80°С, но лучше ограничиться температурой в 60°C.

Вычисление сопротивления и мощности рассеивания ток-ограничивающих резисторов

Примечание: Только для L/R систем.

Применяя закон Ома, делим на ток шагового двигателя получаем сопротивление резистора:
Значение резистора = Изменение напряжения на резисторе / Ток обмоток шагового двигателя.

Важно: Вам нужно знать мощность рассеивания резистора, которую он будет рассеивать в виде тепла и на которую он должен быть рассчитан.
Значение мощности рассеивания резистора = Изменение напряжения на резисторе * Ток обмоток шагового двигателя.

Источник

Популярные заблуждения о шаговых электродвигателях и их разъяснения

Даже опытные инженеры часто имеют не совсем верное представление о шаговых электродвигателях и способах управления ими. В данной статье мы разберем лишь несколько основных заблуждений что, надеюсь, поможет и новичкам и бывалым инженерам при выборе драйверов управления. Было бы хорошо разобрать все особенности, но тогда эта статья превратилась бы в книгу.

В этой статье речь пойдет о биполярных шаговых электродвигателях, поскольку они являются наиболее популярными в использовании на сегодняшний день. Униполярные шаговые электродвигатели все еще используются в некоторых устройствах, однако их популярность с каждым годом снижается. Это снижение обуславливается преобладанием относительно недорогих драйверов для биполярных двигателей. Учитывая снижение стоимости управления, почему бы не использовать биполярные шаговые электродвигатели? В конце концов у них есть еще один плюс – больший крутящий момент.

Температура

Многие инженеры ошибочно полагают, что если шаговый электродвигатель имеет небольшой размер, значит, его температура тоже должна быть небольшой. Этот миф легко развеять, взяв документацию на электрическую машину, пирометр, и произвести замер. То, что при касании может показаться «очень горячим», на самом деле не будет даже подходить к максимально допустимой температуре машины. Шаговые электродвигатели обычно имеют повышенную температуру, это связано с внутренними процессами в самой машине. Даже когда они не вращаются они также подвержены потерям. Тем не менее, если вы сомневаетесь – перестрахуйтесь и проверьте температуру. Естественно, если температура превысит предельно допустимую, указанную в паспорте, это может привести к необратимым последствиям (выход из строя или значительное сокращение срока службы).

В случаях, когда есть необходимость снизить потребление электроэнергии в режиме простоя, можно использовать специальные драйверы, в которые данная функция включена. Однако это повлияет не только на значение тока в обмотках, но и на удерживающий момент, что в определенных механизмах тоже важно.

Микрошаговый режим

Микрошаги это не магия. Существуют специальные драйверы для микрошагового управления. Это позволяет увеличить точность позиционирования, однако достигается за счет значительного крутящего момента. Кроме того, наличие драйвера, обеспечивающего шаг 1/32, не значит, что ваш электродвигатель сможет это реализовать. После определенного порога (1/10 и иногда 1/16) требуются высококачественные драйверы и двигатели. Даже если ваш шаговый электродвигатель и драйвер смогут реализовать микрошаг в 1/32, возможно ли это интегрировать в общую систему управления?

Рассмотрим следующий пример. Линейное перемещение с 10 шагами на дюйм ходового винта напрямую соединенного с типичным шаговым двигателем, имеющим 200 шагов на оборот. Каждый полный шаг электрической машины будет переведен в 0,0005 дюйма линейного движения. Казалось бы, что, якобы, та же система микрошагов 1/32 сможет уменьшить линейный шаг до 0,000015. Но в реальности реализации данной системы практически не возможна, так как упругость и силы трения не позволят преобразовать настолько миниатюрные шаги к линейному движению.

Микрошаговый режим реально полезен при проверке системы с шаговой электрической машиной на резонанс. Это дает определенные возможности для избегания резонанса. Как известно, любая механическая система имеет резонансную частоту. Для шаговых электродвигателей достижение этой частоты, как правило, происходит на определенной скорости, после чего двигатель начнет сильно шуметь. Эти шумы могут привести к «пропусканию шагов», что чревато серьезными последствиями для определенных систем. В некоторых случаях это может привести к слишком большим вибрациям. В случаях с режущими машинами, такими как токарные станки, этот звук можно спутать с рабочим звуком обработки поверхности заготовки. Микрошаговый режим уменьшает расстояние пройденное валом между шагами (на появление шумов тратится меньше энергии).

Номинальное напряжение и напряжение питания

Наверное, одним из самых запутанных моментов является несоответствие напряжения на обмотке, указанного в паспорте машины, и реального напряжения источника питания, используемого для питания электрической машины. Если в техпаспорте указывается напряжение обмотки равное 3,4 В, то как получается, что электродвигатель подключается к источнику 48 В постоянного тока? Или иногда и к 80 В.

Номинальное напряжение не настолько критично, обратите внимание на ток.

Такое подключение стало возможным благодаря тому, что большинство современных драйверов имеют встроенное ШИМ управление выходным напряжением. Драйверы контролируют ток обмотки. Когда ток доходит до максимального значения (определяется максимальным током электрической машины), драйвер отключает питание, или снижает значение тока. При этом превышать максимальное напряжение драйвера нельзя.

Рассмотрим небольшой пример на основе шагового электродвигателя с номинальными данными: Uн = 12 В, Iн = 0,33 А, активное сопротивление обмотки R = 32,6 Ом, реактивное сопротивление обмотки L = 48 мГн.

12 В – это не максимально допустимое напряжение. Это напряжение нормальной работы, при котором в обмотке будет протекать ток равный 0,33 А.

Если вы управляете электрической машиной с помощью очень простого или Н-мостового драйвера, то вам необходимо ограничивать напряжение 12 В для предотвращения превышения номинального тока.

В случае использования драйвера с прерывателем (chopper drive), превышение номинального напряжения не является проблемой. Чем выше будет напряжение – тем быстрее машина достигнет магнитного насыщения. Приведенная ниже формула это иллюстрирует:

Приведенная формула вычисляет ток обмотки электродвигателя за определенный промежуток времени.

Ток, через катушку индуктивности 50 мГн, в течении 1 мс увеличивается пропорционально напряжению.

Если двигатель «перешагнет» прежде, чем сможет достаточно насытиться для развития необходимого момента, он начнет «терять» шаги. Если вы обнаружите, что такое происходит с вашей машиной на большом ходу – рассмотрите вариант повышения напряжения питания.

Источник

Напряжение на шаговые двигатели

Популярные вопросы

Помогите с Linear Advance

MK8 настройка в Marlin 1.0

Подскажите какие параметры нужно задать для MK8 в Marlin v.1.0 что бы выдавливал пластик достаточно.

Чем 3D принтер отличается от 3D плоттера?

Ответы

Технические характеристики:
Угловой шаг: 0,9 градуса
Длина: 48 мм
Напряжение: 2,7 В
Ток: 1,68 А
Сопротивление: 1.6 Ом
Индуктивность: 3,5 мГн
Момент удержания: 4,2 кг*см
Кол-во выводов: 4 шт
Инерция ротора: 68 г*см2
Фиксирующий момент: 0,26 кг*см
Диаметр вала: 5 мм
Вес: 360 г

Так что задавайте свой вопрос авторам вашей формулы.
Исходя из вашей формулы напряжение должно быть 60В, потребляемая мощность 100Вт, а ток 37.5А

Вы в корне не правы 2.7 В будет на обмотке в режиме удержания на невращающемся роторе без микрошагов. При вращении изза индуктивности обмотки для сохранения момента напряжение намного выше нужно. А чтоб не юыло токов выше номинального и нужен драйвер. В общем почитайте теорию прежде чем вводить людей в заблуждение

В заблуждение вводите вы. Я же вытащил технические характеристики упомянутого автором

(Хваленый 42BYGHM809 имеет индуктивность аж 4мГн, т.е. напряжение ему нужно 62в)

Ох уж теоретики.
Ладно, давайте решим задачку.:
Дано:
Двигатель 42BYGHM809
Драйвер dm856
Напряжение 60В
Двигатель установлен на ось Z
Вопрос: Что вперед сгорит, драйвер, двигатель иль БП, и через сколько секунд?

Если же вы точно уверены в своей правоте, то поставьте натурный эксперимент, и утрите нос всем неверующим.

Не путайте входное напряжение на драйвере и среднее напряжение на обмотке двигателя.
Ток обмотки регулируется ШИМом.
Чем больше напряжение, тем быстрее возрастает ток в обмотке.

Уважаемый, вы не правы. Если бы шаговик был пассивной нагрузкой (типа сопротивления) то ваше рассуждения более менее верны). И опять: ‘Вопрос: Что вперед сгорит, драйвер, двигатель иль БП, и через сколько секунд?’ ПОчему что-то должно сгореть? Вы считаете что 60в такое высокое напряжение, что пробьет изоляцию обмоток? драйвер не сгорит, т.к. расчитан на 60 вольт. Двигатель не сгорит, т.к. будет получать свои 1.7А. А БП может сгореть если он китайский, но разговор не об этом. Объястню на пальцах как работает шаговик, если вы не понимаете. Вращение и момент создаются током и зависят только от него! Нужный ток шаговику дает драйвер. Вот шаговик крутится очень медленно, драйвер питает его нужным током, момент номинальный, все хорошо, и пофигу какое напряжение, 12в, 24, или 60в, пофигу! Т.к. вращение медленное то даже 12в упевает за такт поднимать в обмотках ток до нужных 1.7а (я надеюсь вы помните из курса физики что ток в индуктивности скачком не меняется, ему нужно время, а скорость нарастания тока в обмотке зависит от приложенного напряжения). А что происходит когда скорость вращения шаговика увеличивается? 12В уже недостаточно чтобы за такт вращения (шаг) в обмотке двигателя ток успел подняться до нужных 1.7а, чтобы обеспечить требуемый момент. Вот для этого и нужно поднимать напряжение! Чем выше напряжение, тем больший момент можно снять с шаговика на высоких скоростях.

Источник

Изучаем миниатюрный шаговый двигатель

Шаговые двигатели нашли широкое применение в современной промышленности и самоделках. Их используют там, где необходимо обеспечить точность позиционирования механических узлов, не прибегая к помощи обратной связи и точным измерениям.

Сегодня хочу поговорить об особой разновидности шаговых моторов — миниатюрные шаговые двигатели, которые применяются в конструкциях оптических систем. Мы подробно рассмотрим их устройство и способы управления такими крошечными моторчиками.

Шаговый двигатель — бесколлекторный (бесщёточный) электрический двигатель с несколькими обмотками (фазами), расположенными на статоре и магнитами (часто постоянными) на роторе. Подавая напряжения на обмотки статора, мы можем фиксировать положение ротора, а подавая напряжение на обмотки последовательно можно получить перемещение ротора из одного положения в другое (шаг), причём этот шаг имеет фиксированную угловую величину.

Мы не будем останавливаться на рассмотрении каждого типа шагового двигателя. Об этом в сети написано довольно много и хорошо, например здесь.

Хочу поговорить об особой разновидности шаговых моторов — миниатюрные шаговые двигатели, которые применяются в конструкциях оптических систем. Такие малыши имеются в свободной продаже. Но в сети, особенно в русскоязычной, очень мало информации по таким моторчикам. Потому, когда мне потребовалось использовать их в своём проекте, пришлось изрядно поискать информации и провести пару экспериментов.

Результатами своих поисков и экспериментами я поделюсь в этой статье.

Мы рассмотрим вопросы управления такими маленькими моторчиками, а именно:

Знакомство

Сначала немного посмотрим на внешний вид нашего героя:

Он действительно очень маленький! Согласно умной книжке Петренко С.Ф.
«Пьезоэлектрические двигатели в приборостроении», меньших размеров электромагнитные моторчики создать в принципе невозможно… то есть возможно, но с уменьшением диаметра проволоки, из которой изготавливают обмотки, всё больше энергии рассеивается в виде тепла в окружающую среду, что приводит к уменьшению КПД моторчика и делает их использование нерациональным.

Из примечательного, можно отметить, что его вал очень короткий и имеет специальную проточку для установки шестерни или рычага.

Отчётливо видны две обмотки, которые даже покрыты изоляцией разного цвета. Значит, наш моторчик относится, скорее всего, к классу биполярных шаговых двигателей.
Посмотрим как он устроен:

Считаю, наше знакомство с этими моторчиками будет не полным, если мы не посмотрим, что же у него внутри. Ведь всегда интересно заглянуть внутрь механизма! Разве нет?

Собственно, ничего необычного мы не увидели. Ротор намагничен. Подшипников нигде не наблюдается, всё на втулках. Задняя втулка запрессована в корпус двигателя. Передняя ничем не закреплена. Интересно, что корпус двигателя собирался точечной сваркой. Так что переднюю крышку корпуса пришлось спиливать.

Теперь перейдём к вопросу подключения и его электрическим характеристикам.

Убедимся, что он биполярный, прозвонив обмотки. Действительно биполярный, всё как на картинке выше. Сопротивление обмоток около 26Ом, хотя продавец указал 14Ом.
В описании сказано, что напряжение питания 5В. Хотя мы то с вами знаем, что для шагового двигателя важен ток, который будут потреблять его обмотки.
Пробуем подключить.

Эксперимент №1. L293D + ATtiny44

Как мы знаем, для управления биполярным шаговым двигателем необходимо не просто прикладывать напряжения к двум обмоткам в нужной последовательности, но и изменять направление тока в этих обмотках, причём делать это независимо друг от друга. Для этого на каждую обмотку нужен собственный Н-мост. Чтобы не городить его из транзисторов, был взят готовый в лице микросхемы L293D. Ещё одно её преимущество — у микросхемы имеются специальные выводы Enable1 и Enable2, который включают и выключают каждый мост. Их можно использовать чтобы подавать ШИМ сигнал, тем самым, возможно контролировать напряжения питания каждого моста. Зачем это может понадобиться, мы увидим дальше.

Кроме того, L293D может коммутировать напряжения до 36В и выдавать до 1,2А на каждый канал, чего вполне должно хватить для питания обмоток нашего моторчика.

Управляющие входы L293D подключены к выходам OC0A и OC0B, что позволит в будущем подавать на них ШИМ сигнал.

Прошивать контроллер будем через внутрисхемный программатор (на схеме не указан).
Вот как выглядит собранная схема на макетной плате:

И вот так расположен наш подопытный:

Теперь можно приступать к экспериментам.

Рассчитаем ток, который будет течь через обмотки двигателя при подключении их к напряжению 5В:

I=U/R = 5В/26Ом = 190мА

Совсем небольшой. Интересно как долго он сможет держать такой ток и не перегреться.

Включим в цепь одной из обмоток амперметр и вольтметр, и проведём замеры соответствующих величин при подачи питания на эту обмотку через драйвер.

При падении напряжения на обмотке 2.56В амперметр показывает ток 150мА, причём хорошо заметно, как начинает падать величина силы тока в процессе нагревания обмоток. Надо отметить, что не так уж и сильно он греется.

Убедившись, что напряжение 5В для моторчика опасности не представляет, попробуем покрутить им в разные стороны. И вот теперь пару слов мы скажем про режимы работы шагового двигателя.

Об этом довольно хорошо сказано здесь.

Не будем повторяться, но вспомним, что шаговый двигатель может работать в трёх режимах:

Исходный код программы выглядит следующим образом:

Полношаговый режим. Одна фаза

Двигатель делает 16 шагов на один оборот. Причём шаги для двух фаз имеют не одинаковую угловую величину. Не знаю с чем это связано. Может конструкция двигателя такая?

Посмотрим на максимальную частоту шагов, которую он может обеспечить в таком режиме, не пропуская их.

Минимальная задержка между шагами 2мс, значит 500 шагов/секунду. Неплохо, это 31 об/сек = 1850 об/мин.

Полношаговый режим. Две фазы

Обратите внимание, что в этом случае шаги получаются ровнее, они одинаковы по величине (во всяком случае, более одинаковы, чем в предыдущем случае).

Естественно, в этом случае под напряжением находятся одновременно две обмотки и теплоотдача возрастает. Двигатель уже через несколько секунд нагревается достаточно сильно, потому эксперимент я прекратил.

Что с максимальной частотой шагов? 500 шагов/секунду; 31 об/сек = 1875 об/мин.
Надо сказать, что для шагового двигателя он довольно шустрый. Это связано с малым количеством магнитных полюсов на роторе.

Эксперимент №2. TMC2208 + ATtiny44

TMC2208 — название микросхемы-драйвера для управления биполярными шаговыми двигателями, аналогично называется модуль на её основе, который выпускается для установки в самодельные (и не только) 3D принтеры и имеет унифицированное расположение выводов.
Много и доходчиво сказано про этот модуль вот здесь.

В интернете много написано про то, как установить его в свой 3D принтер, но нас интересует как подключить модуль к микроконтроллеру, потому давайте разбираться.

Характеристики микросхемы впечатляют (только впечатлительных людей):

Управлять ей очень просто, по сути нужно всего два пина микроконтроллера. Один подключаем к DIR — указываем направление вращения двигателя, другой подключаем к STEP — при подаче импульса микросхема производит необходимые манипуляции с токами и напряжениями на обмотках двигателя и тот делает один шаг.

Схема подключения будет выглядеть так:

Дополнительно я использовал пин EN, чтобы отключать моторчик и длительное время не держать обмотки под напряжением.

Перед тем как всё запустить нужно произвести предварительную настройку модуля. Во-первых, выставить желаемый режим микрошага. Во-вторых, выставить желаемый максимальный ток двигателя.

С микрошагом всё просто. За это отвечают пины MS1 и MS2.

Отмечу, что микросхема не скачкообразно меняет напряжение, а делает это «плавно», но так как микросхема цифровая, то на выходе у нас не гладкий сигнал, а сигнал с маленьким шагом, если верить документации, то каждый шаг она разбивает на 256 микрошагов. Сделано это для увеличения плавности хода, снижения шумов от двигателя и по идее не должно позволять конструкции, к которой он прикручен, входить в резонанс. Короче, всё для того, чтобы 3D принтер работал тише.

Чтобы выставить ток двигателя необходимо измерить напряжения на контакте Vref, который указан на рисунке. Изменить значение напряжения можно при помощи потенциометра, установленного рядом с контактом. Напряжение на контакте будет пропорционально току двигателя, и зависимость будет иметь следующий вид:

Нашему моторчику нужно примерно 150мА, потому Vref = 0,216В. Устанавливаем…

Подразумевается, что увеличение тока микросхема обеспечивает за счёт увеличения напряжения на обмотке. Потому, нужно позаботиться о том, чтобы этого напряжения хватило. Но, полагаю, для того маленького моторчика должно хватить и 5В.

Протестируем работу моторчика с различными режимами микрошага и посмотрим что получится (пауза между микрошагами 10мс):

Можно заметить, что движения моторчика стали более плавными (по сравнению с предыдущим экспериментом), однако характерные 16 шагов всё равно наблюдаются довольно чётко. Что же… видимо это черта шаговых двигателей с ротором из постоянных магнитов.
Ещё необходимо отметить, что моторчик в этом режиме нагревается почти также сильно, как в полношаговом режиме с двумя фазами. Оно и понятно, обмотки постоянно находятся под напряжением, непрерывно происходит выделение тепла.

Полагаю, для таких моторчиков использование такого драйвера, да и вообще режимов микрошага не очень целесообразно.

Эксперимент №3. ATtiny44-драйвер

Вернёмся ненадолго к первому эксперименту и вспомним, что входы EN1 и EN2 микросхемы драйвера подключены к пинам OC0A и OC0B микроконтроллера. Это значит, что мы можем подать туда ШИМ сигнал, генерируемый при помощи таймера TIMER0 и таким образом изменять напряжение, прикладываемое к обмоткам двигателя и соответственно регулировать ток, который будет протекать через них.

Согласно даташиту на микроконтроллер ATtiny44 максимальный ток, который может выдать один пин составляет всего 40мА. Причём не указано для какого вида тока (пульсирующего или постоянного) эта характеристика. Просто она есть и она вот такая…

Надо сказать, что я более 7 лет знаком с микроконтроллерами фирмы ATMEL. И ни разу у меня не возникло желания проверить эту строчку из даташита.

Возможно, производитель просто подстраховывается и на самом деле он может выдать больше, а может это действительно максимум, что может выдать один пин.

Мы это выясним. Но сначала нужно выяснить при каком минимальном токе моторчик вообще способен вращаться.

Используя схему из первого эксперимента, подгоняем значение тока через обмотки равное 40мА. Запускаем в полношаговом режиме с двумя фазами (так как будет выше крутящий момент):

Отлично! При 40мА двигатель успешно запустился! Был также выявлено минимальное значение тока обмоток, необходимое для устойчивой работы мотора, и равно оно 30мА.

Разумеется, крутящий момент будет значительно ниже, но для нас важен сам факт того, что удалось запустить моторчик с таким маленьким энергопотреблением.

Схема подключения шагового двигателя к микроконтроллеру будет следующей:

Поскольку каждый пин микроконтроллера работает как полумост (может коммутировать вывод микросхемы либо на Vcc, либо на GND), то для управления биполярным шаговым мотором нам понадобиться 4 пина микроконтроллера.

Немного поясню как работает эта программа. Это модифицированный код из первого эксперимента. Как я говорил выше, будет использован 8 битный TIMER0 для генерирования ШИМ сигнала на выходах OC0A и OC0B. Таймер настраивается в режим FastPWM с предделителем на 8 (частота сигнала при 8МГц тактового генератора микроконтроллера составляет 3906Гц).

Чтобы изменять полярности сигналов на обмотках происходит переключение пина микроконтроллера от Vcc к GND изменением соответствующего бита в регистре PORTx и изменением коэффициента заполнения ШИМ путём записи значений в регистры OCR0A и OCR0B (значения подбирались экспериментально).

Курс схемотехники, прослушанный на первом курсе института подсказывает, что мультиметр показывает среднеквадратическое значение напряжения и тока в двигателе.

Шаговый двигатель вращается от пинов микроконтроллера без драйверов!

Но здесь мы не выходим за пределы возможностей микроконтроллера, по крайней мере, если верить тому, что пишут в документации. В таком режиме микроконтроллер и моторчик могут работать долго. Действительно, эксперимент длился 20 минут. За это время не наблюдалось ни пропуска шагов, ни сброса контроллера, ни перегрева (ни у двигателя, ни у контроллера).

Отбросим все предосторожности

Уберём из эксперимента ШИМ и будем напрямую управлять пинами микроконтроллера при помощи регистров PORTx. Посмотрим что будет с микроконтроллером после этого.

Работает… с максимальным током в 51мА… Что же… неожиданно, похоже это и есть предельный ток, который может отдать один пин микроконтроллера? Если я ошибаюсь, поправьте меня.

В любом случае, ролик с ютуба не обманул. Действительно можно управлять этим моторчиком без всяких драйверов.

Выводы

Мы подробно изучили миниатюрные биполярные шаговые моторчики, их конструкцию и способы управления ими, для использования в собственных приложениях.

1. Миниатюрный биполярный шаговый мотор с ротором из постоянных магнитов действительно миниатюрный.

Его основные особенности:

3. Использование специализированного драйвера TMC2208 является спорным вопросом, так как микрошаговый режим не поддерживается самим двигателем, хотя переходы между шагами выполняются более плавно.

4. Возможно подключение шагового двигателя непосредственно к портам микроконтроллера. Но это только в рамках эксперимента, так как крутящий момент в данном случае совсем незначителен, да и малый ток не позволяет совершать шаги с большой скоростью.

В следующий раз расскажу, для чего именно нам потребовались такие маленькие шаговые моторчики.

Источник

Читайте также:  Замена картера двигателя стоимость
Ответы на популярные вопросы
Adblock
detector