Наземное применение авиационных двигателей

ЭКСПЛУАТАЦИЯ И ИСПОЛЬЗОВАНИЕ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ В НАЗЕМНЫХ УСЛОВИЯХ

Аннотация: В данной работе рассмотрены области применения газотурбинных двигателей в наземных условиях, принципы работы и этапы запуска двигателя, а также реакции, возникающие в газотурбинном двигателе при введении в эксплуатацию.

Ключевые слова: газотурбинный двигатель, турбина, сопло, лопастной компрессор, камера сгорания.

Газотурбинные установки эффективно применяются в различных диапазонах мощностей. Возможность использования ГТУ как в стационарных, так и в перспективных режимах работы в составе тепловой электростанции было доказано их применением в качестве пиковых для обеспечения необходимого уровня энерговыработки, оперативной готовностью к быстрым пускам и приему нагрузки, а также большим рабочим ресурсом и высоким коэффициентом полезного действия.

Неотъемлемой частью газотурбинной установки является газотурбинный двигатель. Двигатель называется газотурбинным, если сжатый в компрессоре воздух подается в камеру сгорания, где к нему подводится теплота, а образовавшийся горячий газ, поступая в лопаточный аппарат турбины, преобразует свою потенциальную энергию в кинетическую. В свою очередь кинетическая энергия на лопатках рабочих колес превращается в механическую энергию, передавая её вращающемуся непрерывно валу, который соединен с компрессором и нагрузочным устройством[1].

Количество топливно-воздушной смеси зависит от количества воздуха поданного в камеру сгорания. Это значит, что увеличение количества топливно-воздушной смеси приведёт к увеличению давления в камере сгорания и температуры газов на выходе из камеры сгорания, и в результате создаст большую энергию выбрасываемых газов, направленную для вращения турбины и повышения реактивной силы[3].

На рисунке 1 представлена общая схема устройства газотурбинного двигателя. Главной движущей силой в работе газотурбинного двигателя являются лопатки. Лопатки в решающей степени определяют надёжность и безотказность работы ГТД. Изначально сжатие воздуха происходит в лопастном компрессоре, затем поступает в рабочую область (на данном этапе впрыскивается топливо). Внутренняя конструкция двигателя представляет собой сложный механизм, где можно заметить два ряда лопаток, один из которых является неподвижным и закреплен на корпусе. Вторые же соединены с валом, в результате чего и происходит их вращение. Данный вид конструкции можно объяснить тем, что газу при поступлении требуется опора, которую и выполняют неподвижные лопатки.

Вал компрессора в движение приводит стартер. Газотурбинный двигатель отличается высокой пусковой способностью. Запуск газотурбинного двигателя, весьма энергоемкий процесс. Зажигание происходит всего один раз при запуске. Запуск ГТД, в зависимости от типа двигателей, может быть электрическим (при помощи стартер-генератора) или воздушным (с помощью воздушного стартера). В обоих случаях запуск может производиться от наземного источника электричества, сжатого воздуха и вспомогательной силовой установки (электрический стартер-генератор) или совокупностью вышеперечисленных методов.

Запуск газотурбинного двигателя разделяют на три основные стадии. На первой происходит раскрутка ротора двигателя стартером до определенной частоты вращения, при которой в камере сгорания может сформироваться устойчивый факел горения топлива. Вторая стадия подразумевает подачу камере сгорания порционного топлива, затем подачу электрического напряжения на свечи зажигания. При этом происходит воспламенение топлива, и в дальнейшем раскрутка производится совместно со стартером и турбиной ротора двигателя. На третьей стадии с определенной частотой вращения ротора двигателя происходит отключение стартера и дальнейшая раскрутка, до оборотов малого газа, где производится непосредственно турбиной ротора.

Повышению коэффициента полезного действия способствуют подогрев газа в процессе его расширения в турбине и охлаждение воздуха в процессе его сжатия в компрессоре.

В сложных циклах ГТД можно получить более высокий КПД и большую полезную работу, предусматривая промежуточное охлаждение воздуха (между компрессорами или их ступенями), учитывая вторичный подогрев газов, а также рассматривая регенерацию (использование теплоты выходящих из турбин газов для предварительного подогрева сжатого воздуха). Современные газотурбинные двигатели в составе ГТУ имеют КПД 40-45% [4].

С развитием авиационных ГТД началось применение ГТД в промышленности и транспорте. Для преобразования базового авиационного двигателя в наземный заменяются материалы некоторых деталей холодной и горячей частей, наиболее подверженных коррозии. Так, например, магниевые сплавы заменяются на алюминиевые или стальные, в горячей части применяются жаростойкие сплавы с повышенным содержанием хрома. Камера сгорания и система питания топливом модифицируются для работы на газообразном топливе или под многотопливный вариант. Дорабатываются узлы, системы двигателя (запуска, автоматического управления, противопожарная, маслосистема) и обвязка для обеспечения работы в наземных условиях. При необходимости усиливаются некоторые статорные и роторные детали. Ускоренному процессу данного преобразования послужили: быстрый прогресс в авиадвигателестроении по параметрам цикла и повышению надежности, высокое качество изготовления авиационных ГТД и возможность организации их централизованного ремонта, возможность использования авиадвигателей, с необходимым ремонтом для эксплуатации на земле[5].

Газотурбинные двигатели по праву можно считать классическим примером сложного устройства, детали которого работают длительное время в условиях предельно высоких температур и повышенных нагрузок. Данные двигатели являются образцом высочайшей надежности, которая обеспечивается эффективными конструкторскими решениями, сложными газодинамическими, тепловыми и прочностными расчетами.

Список литературы

1. Лоскутников А. А., Усов Д. В., Ялчибаева Л. Н., Копиртех А. В. Применение газотурбинных двигателей малой мощности // Молодой ученый. — 2011. — №10. Т.1. — С. 40-42.

2. Транспортная энергетика: учеб. пособие для студ. высш. учеб. заведений/ Ю.Г.Котиков, В.Н.Ложкин; под ред.Ю.Г.Котикова.-М.:Издательский центр «Академия», 2006.-272с.

3. Масленников М.М., Шальман Ю.Н. Авиационные газотурбинные двигатели. М.,«Машиностроение»,1975,576.

Источник

Авиационный дизель: тупиковая ветвь или.

Потому – вот он, авиационный дизель.

Вообще, до толкового использования дизеля в авиации дошли всего две страны. Германия и Советский Союз. Первым сам бог велел, поскольку Дизель был немцем и все разработки после его смерти остались в Германии, а вот СССР – это отдельный и сложный вопрос.

На самом деле дизельную тему обе страны начали разрабатывать не от хорошей жизни. С моторами были проблемы, у немцев еще дефицит нефти, у нас – отсутствие технологий для нормальной ее переработки. Высокооктановые бензины были для СССР несбывшейся мечтой, всю войну провоевали на импортном высокооктановом топливе.

Собственно, разные по сути проблемы нефтяного плана породили интерес к дизелям. И было от чего.

Огромным плюсом дизеля считалась возможность работать не на бензине, а, как сейчас бы сказали, на альтернативных видах топлива. То есть керосине и дизтопливе. Да, керосин того времени нормально можно было заряжать в дизель, и мотор его прекрасно пережевывал. Даже современные дизели вполне могут использовать керосин как зимнее топливо в условиях очень низких температур, надо только цетаноповышающие присадки добавлять.

Керосин был не столь пожароопасен, как авиационный бензин, и с его выгонкой из нефти проблем не было с 1746 года.

Минусом считаем большую массу дизельного двигателя по сравнению с бензиновым собратом.

Получилась ситуация, в которой грех было не попробовать разработать моторы для самолетов, которые будут работать на том топливе, которое проще выгнать. Логично, не так ли? Тем более когда есть разработки. Немцы вполне по-дружески поделились рецептами приготовления, и в СССР работа тоже закипела.

Каждая страна пошла своим путем.

По мере продвижения работ стало понятно, что дизель – двигатель не для истребителя. Слишком он вышел неспешным, не умеющим реагировать на требование быстро повысить обороты. Впрочем, это и сейчас актуально.

Потому советские (начнем с нас) конструкторы сразу отвели для авиадизеля нишу дальних и тяжелых бомбардировщиков. Во-первых, сами по себе самолеты были большими и не пугались массы двигателя, во-вторых, экономичность, а значит, дальность действия были определяющими факторами.

В отличие от немцев, нашим конструкторам была поставлена задача снять с дизельных двигателей максимально возможную мощность в 1300-1500 л.с., что было цифрой несколько фантастической. В стране не могли на тот момент создать бензиновый мотор такой мощности, а тут дизель…

Но именно на моторы такой мощности, которые будут способны разогнать бомбардировщик весом 13-15 тонн до приемлемой скорости в 400 км/ч и обеспечить дальность в 2500-3000 км, были ориентированы советские конструкторы.

Главным дизелистом страны безоговорочно надо считать Андрея Дмитриевича Чаромского.

Под его руководством коллектив ЦИАМ (Центральный институт авиационного моторостроения имени П. И. Баранова) разработал дизель АН-1А мощностью 900 л.с., который на низких (до 2500 м) высотах совершенно не уступал бензиновым двигателям. АН-1А стал основой для дальнейших разработок этих моторов, весьма успешно пройдя испытания на бомбардировщике ТБ-3Д.

Читайте также:  Как появился водяной двигатель

Потом Чаромского арестовали как вредителя, а на базе АН-1А разработали два мотора, М-40 (работы велись на Кировском заводе в Ленинграде под руководством В. М. Яковлева) и М-30 («Шарага» при заводе №82 в Москве под руководством С. И. Жилина и А. Г. Таканаева).

Работы велись в режиме «совершенно секретно», доходило до маразма: военные представители, будучи из другого ведомства, не могли получить доступ к моторам для контроля качества продукции. Допуски выдавал лично нарком авиапромышленности А. И. Шахурин.

Развитие обеих моделей двигателей велось в направлении сохранения рабочего объема, диаметра цилиндра и хода поршня в сторону повышения взлетной мощности и высотности мотора. Высотность моторов должны были обеспечивать двухступенчатые турбокомпрессоры, ТК-88 на М-40 и ТК-82 на М-30. На каждом двигателе устанавливались по четыре турбокомпрессора.

К 1940 году двигатели не были закончены, но и в них не было особой нужды. Дизель рассматривался исключительно как политический мотор, способный обеспечить кругосветный перелет рекордного самолета под управлением М. М. Громова. Был такой проект.

Перелет не состоялся, поскольку не смогли добиться от обоих двигателей необходимого моторесурса в 100 часов. Заводам и конструкторам было дано задание к августу 1940 года провести стендовые испытания, а к осени установить моторы на самолеты ТБ-7 и ДБ-240 (будущий Ер-2) для летных испытаний.

Скажем честно, дизели переоценили. Создается впечатление, что советское авиационное руководство ждало от двигателей какого-то чуда, поскольку в 1941 году в НИИ ВВС заседала комиссия, определившая требования для нового самолета под форсированные дизели М-40Ф бомбовую нагрузку аж в 6 000 кг.

Плюс ко всему, не дожидаясь начала испытаний, ведомство Шахурина (НКАП) выдало задание воронежскому авиазаводу №18 заказ на строительство 90 самолетов Ер-2 с дизелями М-40Ф в 1941 году, и 800 машин – в 1942-м.

Понятно, что все эти планы были уничтожены войной. Но лучше так, потому что моторы до летного состояния довести смогли перед самым началом войны.

Только 23 июля 1941 г. начальник ЛИИ НКАП М. М. Громов утвердил акт об испытании самолета Ер-2 с моторами М-40Ф. На испытаниях самолет с дизелями показал скорость 448 км/ч при расчетной 480 км/ч. После устранения многочисленных недостатков машинам дали «зеленый свет», но началась война, принесшая с собой конец дизельной авиации.

Речь идет о знаменитых налетах на Берлин в августе 1941 года. В операции 10 августа должны были принимать участие 8 самолетов ТБ-7 с моторами М-30. По факту в налете принимали участие семь машин, так как восьмая разбилась при взлете. Из оставшихся семи на свой аэродром в Пушкине вернулся ОДИН (!) самолет. Остальные, увы, вынужденно сели в разных местах именно из-за отказов двигателей М-30.

Ну и, как обычно у нас, все недостатки дизелей, на которые руководство НКАП охотно закрывало глаза до берлинского фиаско, «вдруг» выявились и стали достаточным основанием для почти полного свертывания дизельной программы. Правда, поначалу решили забраковать именно М-40Ф, а М-30 «забанили» несколько позже.

Ермолаев бился за свой самолет до последнего. 5 августа 1941 г. он обратился с письмом к наркому авиапромышленности Шахурину:

Однако судьбу М-40Ф практически решил неудачный налет ТБ-7 на Берлин. Кроме того, Харьков был потерян, но даже до потери города Харьковский тракторный завод был переведен на выпуск дизелей В-2 и танков Т-34. А осенью 1941 года стало невозможно проводить работы по М-40Ф в Ленинграде, так как немцы начали блокаду.

Если обратиться к историческим документам, то можно увидеть, что полный комплект документации по дизелям ОКБ Ермолаева еще в первой половине 1941 г. передали в Воронеж. Однако завод №18 собирал самолеты, а не строил двигатели. Потому быстро наладить производство М-40Ф в Воронеже было просто нереально. А в 1942 году началась эвакуация и этого завода.

В целом к началу войны в СССР было произведено около 200 авиадизелей обеих марок. В первую очередь моторы ставили на ТБ-7, во вторую – на Ер-2. Результаты были неутешительными: в ходе испытаний только 22% моторов М-40 и 10% моторов М-30 смогли наработать более 50 ч, при этом примерно каждый третий дизель выходил из строя, не отслужив и 10 моточасов.

Фактически программа авиадизелей была свернута, выпущенные Ер-2 переводили на АМ-35 и АМ-37.

Но Ермолаев и Чаромский не сдались. Они очень хотели, чтобы ВВС получили дальний бомбардировщик. И в 1943 году ими был представлен на суд Ер-2 с моторами М-30Б.

Буква «Б» в названии мотора означала, что наддув осуществлялся комбинированным способом: в дополнение к двум оставленным турбокомпрессорам Чаромский снабдил дизель приводным нагнетателем, заимствованным от мотора АМ-38. Это обеспечило устойчивую работу мотора на больших высотах полета.

Масса пустой машины увеличилась до 10325 кг (что почти на полторы тонны больше, чем у Ер-2 2АМ-37), а максимальная взлетная (расчетная) — до 17650 кг. Состав экипажа не изменился и включал пилота, штурмана, стрелка и стрелка-радиста.

Испытания провели в феврале 1943 года силами НИИ ВВС. Самолет испытывали инженер-подполковник Н. К. Кокорин и летчики полковник Алексеев и майор Лисицин. По оценкам летчиков, самолет был прост в пилотировании почти на всех режимах. Его максимальная скорость по сравнению с вариантом с АМ-37 уменьшилась до 429 км/ч, зато расчетная максимальная дальность полета превысила первоначально заданную для Ер-2 и достигла фантастических 5500 км.

Бомбардировщик стал более живучим, ведь керосин загорался в холодном воздухе крайне неохотно. Общая масса брони достигла 180 кг, при этом пилот получил 15-мм бронеспинку. Верхняя турель оснастили электроприводом, что облегчило работу стрелку. Теперь поворот на 360° осуществлялся всего за 6 секунд.

Были, правда, и минусы. Малая скороподъемность, большая взлетная дистанция, неспособность лететь без потери высоты на одном моторе. Машина получилась перетяжеленной, мощности двигателей опять не хватало.

Однако было и такое замечание:

В общем и целом следует признать, что нормально работающий авиационный дизель в СССР сделать не смогли. Ер-2 так и не занял место в строю боевых самолетов, поскольку несколько десятков оснащенных М-30 Ер-2 за войну совершили не так уж и много боевых вылетов.

Нельзя сказать, что все труды пошли впустую, поскольку последователем М-30 стал двигатель М400 (М-50Ф-3) мощностью 800 л. с. и М-401 (с турбонаддувом) мощностью 1000 л. с. Эти двигатели переместились с небес на воду и устанавливались на скоростных судах «Заря», «Ракета», «Восход» и «Метеор».

Дизельный двигатель на советских бомбардировщиках, увы, не сыграл сколько-нибудь значительной роли.

Теперь посмотрим, что было у немцев.

А у немцев был Юнкерс. Профессор Хуго Юнкерс.

По окончании Первой мировой Юнкерс переключился на работу по транспортным и пассажирским самолетам. С расширением производства на «Юнкерсе» в 1923 г была создана «Юнкерс моторенбау» ГмбХ, где начались работы по созданию и выпуску авиационных двигателей, в том числе дизелей.

Фирма «Юнкерс» работала над созданием авиационного дизеля в течение 20 лет и наилучших результатов добилась с двигателем Jumo.205.

Но первым реальным авиационным дизелем стал Jumo 204, двенадцатицилиндровый дизельный двигатель мощностью 740 л.с. Этот дизель был установлен на самолеты марки «Юнкерс» G24 и успешно эксплуатировался до 1929 года.

Дизель Jumo 204 оказался успешным двигателем, который стали использовать и на других самолетах. Список состоит из весьма известных моделей: Junkers F.24kay, Junkers Ju.52, Junkers Ju.86, Junkers G.38, Blohm & Voss BV.138.

Но лучшим дизельным авиадвигателем действительно можно считать Jumo.205, разработка которого началась в 1932 году. Это был один из немногих удачных дизельных авиационных двигателей в мире. Jumo.205 стал базой для создания целого семейства дизельных двигателей.

Двигатель отлично показал себя при постоянной нагрузке, однако на резкое увеличение или падение оборотов реагировал, как и советские моторы, падением мощности или даже мог заглохнуть. Плюс Jumo.205 нельзя было назвать высотным мотором: свыше 5000 метров резко падала мощность двигателя на 20-22% и даже больше.

Двигатель использовался на следующих моделях самолетов: Blohm & Voss BV.138, Blohm & Voss Ha.139, Blohm & Voss BV.222, Dornier Do.18, Dornier Do.26, Junkers Ju.86.

Читайте также:  Мерседес gla коробка передач

По факту дизели Юнкерса устанавливали на те самолеты, которые были гарантированы от встреч с истребителями противника. Патрульные океанские и морские летающие лодки, разведчики и так далее. То есть самолеты, которым энергичное маневрирование не требовалось, зато требовалась максимальная дальность полета.

Однако, несмотря на отличную экономичность и, соответственно, прекрасную дальность, дизели Jumo.205 не оправдали надежд. Они хорошо работали при постоянной и длительной нагрузке, но плохо переносили изменение оборотов, что требовалось при боевом маневрировании. Этот недостаток так и не удалось в полной мере преодолеть.

Плюс двигатели Jumo.205 требовали чрезвычайно квалифицированного обслуживания специально подготовленным персоналом. И если в Люфтваффе это еще можно было решить, то попытки «приземлить» Jumo.205 и сделать двигатель танковым потерпел полную неудачу. Именно потому, что двигатель был излишне требовательным в плане обслуживания.

Несмотря на приличный список самолетов, оборудовались дизелями несколько десятков от общего числа. И хотя в итоге интерес у Люфтваффе к дизелям поугас, «Юнкерс» продолжал работу по усовершенствованию авиадизеля Jumo.205 и в 1939 г. выпустил высотную версию – Jumo.207 с двумя центробежными нагнетателями: первый с приводом от выхлопа, второй — с механическим приводом и с промежуточным охладителем.

Пиком развития авиационных дизелей фирмы «Юнкерс» стало поистине чудовищная штука, именуемая Jumo.224. Данный двигатель, по сути, представлял ромб из четырех двигателей Jumo.207. 24-цилиндровый 48-поршневой двухтактный дизель жидкостного охлаждения со встречным движением поршней.

Весил этот кошмар 2 600 кг и по расчетам должен был выдать 4 400 л.с. на взлете и 3 500 л.с. на высоте 15 км. Двигатель не был собран даже для испытаний, не успели. Фото, дошедшие до нас, – это макетные разработки.

Эта, с позволения сказать, конструкция очень заинтересовала наших инженеров после окончания войны. Были проведены исследования и испытания, но Jumo.224 — это предмет отдельной статьи, здесь же скажу только, что на имя заместителя министра авиационной промышленности генерал-майора ИАС М. М. Лукина была подана докладная, в которой после описания двигателя и анализа возможностей были сделаны следующие выводы:

1. Авиадизель ЮМО-224, построенный в виде ромба по схеме Юнкерса, обладает принципиальными крупными дефектами, как то: большой удельный лоб, исключительная сложность конструкции, требующая многолетней работы по доводке.

За несколько лет постройки и доводки ЮМО-224 его данные будут резко отставать от все развивающихся бензиновых двигателей.

2. Конструктивные недостатки проекта ЮМО-224 вытекают из принятой принципиальной силовой схемы. Такие узкие места, как посадка и уплотнительные гильзы, работа одного поршня только на выхлоп, отсутствие доступа к 48 форсункам, сложность картера и т.д. не могут быть устранены без коренной ломки выбранной принципиальной схемы.

3. Производственно и технологически двигатель исключительно сложен. Увеличение числа цилиндров в 4 раза приводит к производственному браку на производстве, создает многодетальную машину, делая ее малонадежной в эксплуатации.

4. Согласно выводов пп. 1, 2, 3 авиадизель ЮМО-224 не может быть внедрен в серийное производство в условиях СССР.

5. Для решения вопроса о постройке авиадизелей ЮМО-224 считаем необходимым привлечь к работе высокоавторитетных специалистов, как-то гл. конструктора завода № 500 А.Д. Чаромского, гл. конструктора з-да N 45 В.М. Яковлева и нач. дизельного отдела ЦИАМ А.И.Толстого.

Нач. ОКО з-да N 45 Маликов И.Н
Нач. КБ дизельного отдела ЦИАМ Яковлев И.В.
Ведущий конструктор ОКБ з-да N 45 Гришин Б.М.

С предтечами Jumo.224 советские инженеры были знакомы, так как Jumo.4 и Jumo.205 закупались и изучались в 30-е годы в СССР, поэтому наши специалисты прекрасно понимали и трезво оценивали свои силы в производстве таких моторов.

Так получилось, что дизель все-таки перекочевал с небес на землю. Но виной тому был элементарный технический прогресс, который породил турбореактивные двигатели, заменившие в итоге и бензиновые, и дизельные моторы.

Две страны смогли строить авиационные дизельные двигатели, каждой есть чем гордиться. Дизель был интересным мотором для самолетов дальней авиации, вполне мог таскать транспортные и пассажирские самолеты. Возможно, это была изначальная ошибка – устанавливать дизельные моторы на боевые самолеты, но тут уже ничего не поделать.

Сказать, что мы достигли таких же успехов, как и немцы, нельзя. Конструкторы двух стран шли по разным маршрутам, немецкие инженеры, пожалуй, достигли больших успехов, но: Дизель оставил им в наследство все. Наши инженеры шли своим путем, и Чаромский с учениками прошли его более чем достойно.

Источник

Авиационные двигатели

Содержание

Классификация авиационных двигателей

К авиационным двигателям относятся все типы тепловых машин, используемых как движители для летательных аппаратов авиационного типа, т. е. аппаратов, использующих аэродинамическое качество для перемещения, маневра и т. п. в пределах атмосферы (самолеты, вертолеты, крылатые ракеты классов «В-В», «В-3», «3-В», «3-3», авиакосмические системы и др.). Отсюда вытекает большое разнообразие применяемых двигателей — от поршневых до ракетных.

Авиационные двигатели (рис.1) делятся на три обширных класса:

Более детальной классификации подлежат два последних класса, в особенности класс ВРД.

По принципу сжатия воздуха ВРД делятся на:

Класс ракетных двигателей ЖРД также относится к компрессорному типу тепловых машин, так как в этих двигателях сжатие рабочего тела (топлива) осуществляется в жидком состоянии в турбонасосных агрегатах.

Ракетный двигатель твердого топлива (РДТТ) не имеет специального устройства для сжатия рабочего тела. Оно осуществляется при начале горения топлива в полузамкнутом пространстве камеры сгорания, где располагается заряд топлива.

По принципу действия существует такое деление: ПД и ПуВРД работают по циклу периодического действия, тогда как в ВРД, ГТД и РкД осуществляется цикл непрерывного действия. Это дает им преимущества по относительным показателям мощности, тяги, массе и др., что и определило, в частности, целесообразность их использования в авиации.

По принципу создания реактивной тяги ВРД делятся на:

Двигатели первого типа создают тяговое усилие (тягу Р) непосредственно — это все ракетные двигатели (РкД), турбореактивные без форсажа и с форсажными камерами (ТРД и ТРДФ), турбореактивные двухконтурные (ТРДД и ТРДДФ), прямоточные сверхзвуковые и гиперзвуковые (СПВРД и ГПВРД), пульсирующие (ПуВРД) и многочисленные комбинированные двигатели.

Газотурбинные двигатели непрямой реакции (ГТД) передают вырабатываемую ими мощность специальному движителю (винту, винтовентилятору, несущему винту вертолета и т. п.), который и создает тяговое усилие, используя тот же воздушно-реактивный принцип (турбовинтовые, турбовинтовентиляторные, турбовальные двигатели — ТВД, ТВВД, ТВГТД). В этом смысле класс ВРД объединяет все двигатели, создающие тягу по воздушно-реактивному принципу.

На основе рассмотренных типов двигателей простых схем рассматривается ряд комбинированных двигателей, соединяющих особенности и преимущества двигателей различных типов, например, классы:

и многие другие комбинации двигателей более сложных схем.

Поршневые двигатели (ПД)

Классификация поршневых двигателей. Авиационные поршневые двигатели могут быть классифицированы по различным признакам:

Рядные двигатели в свою очередь подразделяются на однорядные, двухрядные V-образные, трехрядные W-образные, четырехрядные Н-образные или Х-образные двигатели. Звездообразные двигатели также подразделяются на однорядные, двухрядные и многорядные.

Современные авиационные поршневые двигатели представляют собой звездообразные четырехтактные двигатели, работающие на бензине. Охлаждение цилиндров поршневых двигателей выполняется, как правило, воздушным. Ранее в авиации находили применение поршневые двигатели и с водяным охлаждением цилиндров.

Сгорание топлива в поршневом двигателе осуществляется в цилиндрах, при этом тепловая энергия преобразуется в механическую, так как под действием давления образующихся газов происходит поступательное движение поршня. Поступательное движение поршня в свою очередь преобразуется во вращательное движение коленчатого вала двигателя через шатун, являющийся связующим звеном между цилиндром с поршнем и коленчатым валом.

Газотурбинные двигатели (ГТД)

Одновальные и многовальные двигатели

Простейший газотурбинный двигатель имеет только одну турбину, которая приводит компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта или корабля, мощные электрогенераторы и т.д.), так и дополнительные компрессоры самого двигателя, расположенные перед основным.

Преимущество многовального двигателя в том, что каждая турбина работает при оптимальном числе оборотов и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плоха приемистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме легкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартер для разгона при пуске только ротора высокого давления.

Читайте также:  Как работает двигатель шаубергера

Турбореактивный двигатель (ТРД)

В турбореактивном двигателе сжатие рабочего тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и компрессора, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания. Компрессор приводится в движение турбиной, смонтированной на одном валу с ним, и работающей на том же рабочем теле, нагретом в камере сгорания, из которого образуется реактивная струя. Во входном устройстве осуществляется рост статического давления воздуха за счёт торможения воздушного потока. В компрессоре осуществляется рост полного давления воздуха за счёт совершаемой компрессором механической работы.

Степень повышения давления в компрессоре является одним из важнейших параметров ТРД, поскольку от него зависит эффективный КПД двигателя. Если у первых образцов ТРД этот показатель составлял 3, то у современных он достигает 40. Для повышения газодинамической устойчивости компрессоров они выполняются двухкаскадными. Каждый из каскадов работает со своей скоростью вращения и приводится в движение своей турбиной. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последней (самой низкооборотной) турбиной, проходит внутри полого вала компрессора второго каскада (высокого давления). Каскады двигателя так же именуют роторами низкого и высокого давления.

Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока:

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле, который истекает из него, создавая реактивную тягу.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя используют жаропрочные сплавы, оснащенные системами охлаждения, и термобарьерные покрытия.

Турбореактивный двигатель с форсажной камерой (ТРДФ)

Двухконтурный турбореактивный двигатель (ТРДД)

Первым, предложившим концепцию ТРДД в отечественном авиадвигателестроении был Люлька А. М. (На основе исследований, проводившихся с 1937, А. М. Люлька представил заявку на изобретение двухконтурного турбореактивного двигателя. Авторское свидетельство вручили 22 апреля 1941 года.)

Можно сказать, что с 1960-х и по сей день, в самолетном авиадвигателестроении — эра ТРДД. ТРДД различных типов являются наиболее распространенным классом ВРД, используемых на самолетах, от высокоскоростных истребителей-перехватчиков с ТРДДФсм с малой степенью двухконтурности, до гигантских коммерческих и военно-транспортных самолетов с ТРДД с высокой степенью двухконтурности.

В основу двухконтурных турбореактивных двигателей положен принцип присоединения к ТРД дополнительной массы воздуха, проходящей через внешний контур двигателя, позволяющий получать двигатели с более высоким полетным КПД, по сравнению с обычными ТРД.

Пройдя через входное устройство, воздух попадает в компрессор низкого давления, именуемый вентилятором. После вентилятора воздух разделяется на 2 потока. Часть воздуха попадает во внешний контур и, минуя камеру сгорания, формирует реактивную струю в сопле. Другая часть воздуха проходит сквозь внутренний контур, полностью идентичный с ТРД, о котором говорилось выше, с той разницей, что последние ступени турбины в ТРДД являются приводом вентилятора.

Одним из важнейших параметров ТРДД, является степень двухконтурности (m), то есть отношение расхода воздуха через внешний контур к расходу воздуха через внутренний контур. (m = G2 / G1, где G1 и G2 расход воздуха через внутренний и внешний контуры соответственно.)

В ТРДД заложен принцип повышения полетного КПД двигателя, за счёт уменьшения разницы между скоростью истечения рабочего тела из сопла и скоростью полета. Уменьшение тяги, которое вызовет уменьшение этой разницы между скоростями, компенсируется за счёт увеличения расхода воздуха через двигатель. Следствием увеличения расхода воздуха через двигатель является увеличение площади фронтального сечения входного устройства двигателя, следствием чего является увеличение диаметра входа в двигатель, что ведет к увеличению его лобового сопротивления и массы. Иными словами, чем выше степень двухконтурности — тем большего диаметра будет двигатель при прочих равных условиях.

Все ТРДД можно разбить на 2 группы:

В ТРДД со смешением потоков (ТРДДсм) потоки воздуха из внешнего и внутреннего контура попадают в единую камеру смешения. В камере смешения эти потоки смешиваются и покидают двигатель через единое сопло с единой температурой. ТРДДсм более эффективны, однако наличие камеры смешения приводит к увеличению габаритов и массы двигателя

ТРДД как и ТРД могут быть снабжены регулируемыми соплами и форсажными камерами. Как правило это ТРДДсм с малыми степенями двухконтурности для сверхзвуковых военных самолетов.

Двухконтурный турбореактивный двигатель с форсажной камерой (ТРДДФ)

Продукты сгорания, выходящие из турбины, смешиваются с воздухом, поступающим из внешнего контура, а затем к общему потоку подводится тепло в форсажной камере, работающей по такому же принципу, как и в ТРДФ. Продукты сгорания в этом двигателе истекают из одного общего реактивного сопла. Такой двигатель называется двухконтурным двигателем с общей форсажной камерой.

Управление вектором тяги (УВТ) / Отклонение вектора тяги (ОВТ)

Специальные поворотные сопла, на некоторох ТРДД(Ф), позволяют отклонять истекающий из сопла поток рабочего тела относительно оси двигателя. ОВТ приводит к дополнительным потерям тяги двигателя за счёт выполнения дополнительной работы по повороту потока и усложняют управление самолетом. Но эти недостатки полностью компенсируются значительным повышением маневренности и сокращением разбега самолета при взлете и пробега при посадке, до вертикальных взлета и посадки включительно. ОВТ используется исключительно в военной авиации.

ТРДД с высокой степенью двухконтурности / Турбовентиляторный двигатель

В данном типе двигателей используется одноступенчатый вентилятор большого диаметра, обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлёте и посадке. По причине большого диаметра вентилятора сопло внешнего контура таких ТРДД становится достаточно тяжёлым и его часто выполняют укороченным, со спрямляющими аппаратами (неподвижными лопатками, поворачивающими воздушный поток в осевое направление). Соответственно, большинство ТРДД с высокой степенью двухконтурности — без смешения потоков.

Устройство внутреннего контура таких двигателей подобно устройству ТРД, последние ступени турбины которого являются приводом вентилятора.

Внешний контур таких ТРДД, как правило, представляет собой одноступенчатый вентилятор большого диаметра, за которым располагается спрямляющий аппарат из неподвижных лопаток, которые разгоняют поток воздуха за вентилятором и поворачивают его, приводя к осевому направлению, заканчивается внешний контур соплом.

По причине того, что вентилятор таких двигателей, как правило, имеет большой диаметр, и степень повышения давления воздуха в вентиляторе не высока — сопло внешнего контура таких двигателей достаточно короткое. Расстояние от входа в двигатель до среза сопла внешнего контура может быть значительно меньше расстояния от входа в двигатель до среза сопла внутреннего контура. По этой причине достаточно часто сопло внешнего контура ошибочно принимают за обтекатель вентилятора.

ТРДД с высокой степенью двухконтурности имеют двух- или трёхвальную конструкцию.

Достоинства и недостатки.

Главным достоинством таких двигателей является их высокая экономичность.

Недостатки — большие масса и габариты. Особенно — большой диаметр вентилятора, который приводит к значительному лобовому сопротивлению воздуха в полете.

Область применения таких двигателей — дальне- и среднемагистральные коммерческие авиалайнеры, военно-транспортная авиация.

ТРДД без смешения (PW4084) в мотогондоле:
1) Воздухозаборник; 2) Узлы крепления; 3) Пилон; 4) Агрегаты; 5) Сопло наружного контура; 6) Сопло внутреннего контура.

ТРДД со смешением (V2500) в мотогондоле:
1) Воздухозаборник; 2) Пилон; 3) Агрегаты; 4) Реверс; 5) Кольцевой смеситель; 6) Общее сопло.

Турбовинтовентиляторный двигатель (ТВВД)

Турбовинтовой двигатель (ТВД)

Турбовальный двигатель (ТВГТД)

На вертолетах используются преимущественно турбовальные двигатели, состоящие из автономного одно- или двухвального газогенератора и свободной (силовой) турбины.

Для передачи крутящего момента с вала двигателя к несущему винту вертолета применяется трансмиссия с редуктором.

Применение осевых компрессоров характерно для турбовальных двигателей больших мощностей. На менее мощных применяются одно- и двухступенчатые центробежные компрессоры либо компрессоры комбинированной схемы, состоящих из нескольких осевых и центробежной ступени.

Источник

Ответы на популярные вопросы